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ABSTRACT9

The High-C binning metagenomic assembly technique sometimes produces collapsed repeats and the
loss of complex regions of DNA that do not assemble well. This creates less gene dense Metagenome-
Assembled Genomes (MAGs), which are harder to accurately classify (Stewart et al., 2018). A classifi-
cation accuracy of 100% makes the difficult task of identifying genetic samples from within the rumen
easier and circumvents the need to culture bacteria before sequencing. By developing new methods
to analyse the ability of metagenomic assembly techniques it becomes easier to remove poor MAGs
from classification training data and improve the classification accuracy. This paper develops and tests a
pipeline for calculating gene metrics, primarily gene density, on consumer grade hardware that could be
deployed in crowdsourced citizen science projects. Using four MAGs produced by Stewart et al. (2018),
the pipeline can be used to evaluate the High-C binning method of metagenomic assembly used to
assemble the four MAGs. The proposed method was able to calculate gene counts and densities in line
with expected values for bacterial genomes. When tested on the RefSeq Saccharomyces Cerevisiae
genome Engel et al. (2022) it was able to accurately calculate the gene density to within ±40.5 gMBP−1

(genes per Mega Base Pairs). This pipeline confirms that the High-C binning assembly technique is
capable of producing accurate MAGs. The ability of the pipeline can be easily improved by selecting a
harsher threshold for the e-value of alignments produced by BLAST+ search alignments.
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INTRODUCTION26

Biological environments such as the rumen of cattle contain large numbers of organisms that are difficult27

to culture in a laboratory environment. As a result, samples must be collected directly from the rumen28

and then assembled using metagenomic techniques like High-C binning. If these samples are able to be29

easily and accurately metagenomically assembled then it would improve our ability to sequence, analyse,30

and classify more genomes and employ the knowledge gained from those processes in developing novel31

medical techniques.32

It is hard to assess the quality of metagenomic assembly because the generated Metagenome-33

Assembled Genomes (MAGs) cannot be easily aligned against a reference genome using a BLAST+34

search algorithm (Camacho et al., 2009) as the MAG may contain the genome for a prokaryote, the host35

cattle, or a combination of the two. A solution would be to identify Open Reading Frames (ORFs) and36

compare those to ORFs that are known to produce proteins. These verified ORFs can then be used to37

approximate a gene density for the genome. This density can be used to evaluate the MAG. This paper lays38

out a pipeline to solve this problem. The pipeline works to: identify possible ORFs; align the ORFs using39

BLAST+ against a protein database (The UniProt Consortium, 2020); filter the results of the alignment40

to exclude any alignments with an e-value beneath a given threshold; calculate an approximation for41

the number of genes in, and therefore the gene density of, the genome. This pipeline provides a novel42

technique that, with further development, could be used on a wider scale in crowdsourced citizen science43

projects as it is capable of running smoothly on consumer grade hardware running Unix style operating44

systems.45



This paper will use the gene density and related metrics calculated from four of the genomes (RUG005,46

RUG154, RUG431, RUG466) from the Stewart et al. (2018) to analyse the accuracy of the High-C binning47

method used to produce 913 Metagenome-Assembled Genomes. I will compare the four MAGs to the48

S. Cerevisiae genome released by Engel et al. (2022), which will be processed using the same pipeline49

described in Section . It will then be possible to compare the result of this pipeline with known metrics of50

other prokaryotes and validate the ability of both the proposed pipeline and the High-C binning technique51

used by Stewart et al. (2018).52

MATERIALS AND METHODS53

To calculate the gene density of a FastA file with nucleotide sequences from an unknown genome, the54

FastA must first be processed to identify potential ORFs. These ORFs are then aligned with a BLAST+55

search against the Uni-Prot Swiss-Prot protein database (The UniProt Consortium, 2020). The Pairwise56

format output from the BLAST+ search is processed with several proprietary Python scripts that refine57

and filter the results. A Python file is then used to calculate the approximate number of genes for each58

given genome, allowing for the calculation of gene density.59

The Prodigal (Hyatt et al., 2010) v2.6.3 Command Line program was used to identify unique ORFs60

from each genome, creating a corresponding .gff3 file. Used in combination with Bedtools (Quinlan61

and Hall, 2010) v2.31.0 these ORFs are extracted from the original genome FastA file into a new FastA62

file containing only the identified ORFs.63

A BLAST+ search was performed on the UniProt Swiss-Prot Database (The UniProt Consortium,64

2020) to compare these identified ORFs to known protein Coding Sequences (CDSs). The program found65

in Appendix C, Listing 6, is used to extract just the query names and the lists of significant alignments66

and write them to a new file. The code found in Appendix B filters out any matches that have e-values67

greater than a given value (1e-5). The filtering of e-values is performed after the BLAST+ search rather68

than using a threshold during the BLAST+ search. This is because during a BLAST+ search filtering does69

not occur during the final stage of the search but rather during the earlier scanning stage of the search70

algorithm (Camacho et al., 2009).71

A method described by Santos-Magalhaes and de Oliveira (2015) provides a way to approximate72

the number of genes in a given genome based on the average protein length expected for a genome.73

Equation 2 represents a modification to an equation proposed by Santos-Magalhaes and de Oliveira74

(2015), substituting the average length of amino acid residues in bacteria, L̄. Santos-Magalhaes and75

de Oliveira (2015) proposed 300 as an average value for bacterial genomes. This pipeline instead76

calculates an average length of amino acid CDS directly from the genome. This provides a more accurate77

approximation for the number of genes in a genome.78

R =
Length o f Identi f ied ORFs (BP)

Length o f Genome (BP)
(1)

79

80

g =
Length o f Genome (BP)

(Average Length O f Protein CDS
R )

(2)

Equation 1 describes the ratio between the number of Base Pairs (BPs) in an identified ORF and the81

number of Base Pairs in the genome. This ratio is used in Equation 2 to calculate an approximate number82

of genes (g) in the genome, given an average length of protein CDS measured in BP.83

The code found in D describes a program which takes as input the genome FastA file, the FastA file of84

ORFs generated by Prodigal and Bedtools, and the Blast+ output processed by the programs in Appendix85

B and Appendix C. It uses these inputs to identify ORFs which have been significantly aligned to at least86

one protein CDS. The program then calculates an average length for all identified protein CDS and applies87

this information to Equations 1 and 2 to calculate an approximate number of genes for the genome FastA88

file.89

The approximate number of genes can then be divided by the total length of all sequences in the90

genome FastA file measured in Mega Base Pairs to calculate an approximate gene density, δ (Equation 3).91

δ =
g

Length o f genome (MBP)
(3)

Appendix E describes examples of commands needed in order to run the pipeline. These commands92

are presented in the appropriate order.93
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RESULTS94

Table 1 shows the total number of significant alignments that obtained an e-value lower than a threshold95

value of 1e-5 and the number of nonsignificant alignments which scored higher than than the threshold96

value. The genomes with shorter overall lengths of ORFs (RUG005 and RUG466) see a higher percent of97

significant alignments compared to the others, although the there is no significant difference between the98

genomes. As shown in Table 2, RUG005 and RUG466 also had shorter ORFs compared to RUG154 and99

RUG431, with the ORFs identified in RUG005 constituting the smallest percent of the genome (80.75%).

Genome RUG005 RUG154 RUG431 RUG466
Significant Alignments 251,004 309,417 230,145 229,716
Nonsignificant Alignments 85,190 116,488 97,314 84,401
Percent Significant / % 74.66 72.65 70.28 73.13

Table 1. The number and percentage of alignments with an e-value of <1e-5.

100

Genome RUG005 RUG154 RUG431 RUG466
Total Genome Length / BP 2,345,410 2,774,557 2,770,634 1,925,880
Total ORF Length / BP 1,893,858 2,504,499 2,562,720 1,711,224
Percent ORFs / % 80.75 90.27 92.50 88.85

Table 2. The length of ORFs and what percentage of the original genome file they make up.

Table 3 lists the average protein CDS length and the approximate gene count for each genome,101

calculated by the program found in Appendix D. Combining this information with the Total Genome102

Length in MBP (Table 2), an approximate gene density is calculated for each genome.

Genome RUG005 RUG154 RUG431 RUG466
Average Protein CDS Length 1045.54 1060.75 1261.08 1029.03
Approximate Gene Count 1811.36 2361.06 2032.16 1662.95
Approximate Gene density / gMBP−1 503.69 850.97 733.46 863.48

Table 3. Approximate Gene Count and Gene Density (in Genes per Mega BPs) given the Average length
of Protein CDS for each genome.

103

This pipeline can be verified by processing reference genomes with known metrics. The genome of S.104

Cerevisiae (Engel et al., 2022) as well as a curated file of Coding Sequences are available through the105

National Center for Biotechnology Information (NCBI) database (Sayers et al., 2022). The results of106

processing the full genome with Prodigal and Bedtools to extract ORFs can be compared against the FastA107

file containing CDS provided by NCBI. Both the ORF and CDS files can be aligned using a BLAST+108

search against the Swiss-Prot database. The output of that alignment search can be processed through the109

Python pipeline described above to gather an approximate gene count and gene density (Table 4).110

Due to a limitation of available hardware, the S. Cerevisiae genome FastA file was separated into111

five sequentially numbered files that were then processed through the gene calculator.py script in112

Appendix D. The results of these five operations were then combined and are shown in Table 4. The same113

process was applied to the S. Cerevisiae CDS FastA file.114

DISCUSSION115

Using metrics calculated from the four MAGs and comparing those to metrics of a known genome (S.116

Cerevisiae), the pipeline calculated the gene density to within ≈ 8% of the expected value. These metrics117

allow for poorly assembled MAGs to be removed from classification training data, improving the ability118

of classification. This in turn makes the process of sampling, assembling, and identifying the MAGs119

easier and more accurate.120

One major limitation of this paper is the imprecision of the method used to calculate the number of121

genes for a genome. The equations put forth by Santos-Magalhaes and de Oliveira (2015) originally use122
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Genome S. Cerevisiae S. Cerevisiae CDS
Significant Alignments 531,043 535,281
Nonsignificant Alignments 275,416 260,454
Percent Significant / % 65.85 67.27
Total Genome Length / BP 12,157,105 8,826,477
Total ORF Length / BP 9,154,275 8,770,452
Percent ORFs / % 75.30 99.37
Average Protein CDS Length 1397.78 1459.62
Approximate Gene Count 6549.14 6008.73
Approximate Gene Density / gMBP−1 538.71 494.26 †

Table 4. Metrics produced by the developed pipeline for the S. Cerevisiae genome.
† Value calculated using the Total Length of the S. Cerevisiae genome, not the Total Length of the S.
Cerevisiae CDS genome, which is already a subset of the full S. Cerevisiae genome.

average values for the length of protein CDS of a taxonomic domain. This paper alters these equations123

to instead utilise the average length of protein CDS of a genome. While this alteration does allow for a124

more appropriate value it is still hampered by using the average length of protein CDS across the genome.125

By using the average lengths it is likely that the true number of genes in a genome is not calculated,126

which makes it harder to accurately calculate the gene density of a genome and harder again to accurately127

evaluate the High-C binning used by Stewart et al. (2018) to create the MAGs in the first place. This can128

be seen with the results of processing the S. Cerevisiae genome as seen in Table 4129

Table 4 shows the results of processing the S. Cerevisiae genome in the same manner as the genomes130

from Stewart et al. (2018). The calculated approximate gene count of 6,549.14 is greater than the actual131

protein producing gene count of 6,014 recorded by Engel et al. (2022). This difference is likely due to the132

threshold value set during the filtering stage of the process. Decreasing the threshold from an e-value of133

1e-5 to a value of 1e-10 may reduce the number of ORFs that found significant alignments during the134

BLAST+ search, thus decreasing the number of identified protein producing Coding Sequences. This in135

turn would reduce the number of approximate genes in a genome.136

This larger number of genes will also create a larger than expected gene density. Using the gene137

count of 6,014 combined with total genome length of 12,071,326 BP we can calculate a more accurate138

gene density of 498.21 gMBP−1, a difference of 40.5 gMBP−1 from the approximation produced by the139

pipeline. This difference of ≈ 8% is large, although it does not invalidate the results generated for the140

four RUG genomes as it would not significantly alter the genomic density for the RUG genomes.141

The NCBI RefSeq database also provides the ability to download a curated FastA file that contains142

only protein CDS. Table 4 shows the metrics produced by the pipeline when processing this CDS FastA143

file. The pipeline is able to align 99.37% of the curated protein CDS to the Swiss-Prot protein database144

(The UniProt Consortium, 2020). The approximate gene density calculated for the CDS FastA of 494.26145

falls within the expected margin of error (≈ 8%) for the pipeline with these parameters.146

Given an error margin of 40.5 gMBP−1 for the gene densities of the RUG genomes, the gene density147

of all four RUG genomes falls within the expected range of 500-1,000 gMBP−1 for prokaryotic genomes148

(O’Leary et al., 2016). These gene densities show that the High-C binning method employed by Stewart149

et al. (2018) has been able to produce genomes similar in gene composition to validated prokaryotic150

genomes in the RefSeq database O’Leary et al. (2016).151

CONCLUSION152

The method proposed in this paper is capable of calculating the gene density of an unknown genome given153

the alignment of the genome to a protein database. This allows for the analysis of Metagenome-Assembled154

Genomes by calculating the gene density of reference genomes, either manually using statistics calculated155

by organisations like NCBI or by processing the reference genomes through the same pipeline as the156

unknown genome.157

The four MAGs produced by Stewart et al. (2018) were found to be within the expected range of gene158

density for prokaryotic genomes. This similarity shows the High-C binning technique used to assemble159

the four MAGs is able to accurately assemble reads from the rumen of cattle into distinct genomes.160
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ADDITIONAL GENE INVESTIGATIONS161

Code Overview162

The code consists of two Python scripts, part one.py and similarity.py. They have been written163

using Python 3.11 and are designed to be run from the command line. Both scripts should be located164

in the same directory, FastA files may be located elsewhere, as long as the file path passed to the script165

is correct. Output files may be sent directly to subdirectories of the outputs directory provided the166

subdirectory already exists.167

part one.py168

part one.py should then be run with a single FastA input file, an output filename, and a K value for169

K-Mer composition operations. An example can be found in Appendix A, Listing 1.170

This will run the part one.py script on the genome 1.fa file, with the statistics generated by171

the script written to ./outputs/genome 1 output.txt. The outputs directory will be created172

in the directory the command was executed from. Running the example command (Appendix A, Listing173

1) will also create a file called genome 1 dict.csv which is a Comma Separated Values (CSV) file174

containing all unique K-Mers found in the corresponding FastA file. Each line will begin with the K-Mer175

in question followed by the number of occurrences of that K-Mer in the provided FastA file.176

part one.py generates the GC-Content Mean, GC-Content Standard Deviation (SD), N50, N90,177

and L50 statistics. These are written to the given output file, with the name of the provided FastA file on178

line 1, then the GC-Content Mean, GC-Content SD, N50, N90, and L50 statistics, each on a new line.179

The file ends on a blank line. An example of the output file can be seen in Appendix A, Listing 2.180

similarity.py181

To compare the Manhattan Distance between any number of genomes, similarity.pywill be required.182

The similarity.py script takes the dict outputs of part one.py and uses them to calculate the183

distance between genomes. The similarity.py script can be passed a filename for the results to184

be written too, and two or more dict files and will return a list of each comparison, and the distance185

between the compared genomes. An example can be found in Appendix A, Listing 3.186

The example from Appendix A, Listing 3 uses similarity.py to calculate the distance between:187

g1 dict and g2 dict; g1 dict and g3 dict; g2 dict and g3 dict. These will be returned to188

the user as a CSV file in the outputs directory with the name which was given as the first argument in189

the example command (distances.csv). An example section of this file can be found in Appendix190

A, Listing 4.191

Third Party Libraries192

The part one.py script makes use of Pysam (John Marshall, 2023) to read in the sequence names and193

sequence strings from a given FastA file. Both scripts also utilise NumPy (Harris et al., 2020) for some194

operations.195

Statistics196

GC-Content197

As shown in Table 5, the mean GC-Contents for each genome vary by 9.014%. Comparing the two198

GC-Content SDs that are most different - RUG005 (2.4090) and RUG154 (1.1743) - with the Hartley’s199

F-Max test gives an FMax value of 4.10. With over one hundred degrees of freedom, the critical value for200

this comparison would be 1.00. This means that the GC-Content SD between the two most divergent are201

statistically heterogenous. This also applies to the RUG466 genome, which is statistically heterogenous202

from the RUG154 genome but not the RUG005 or RUG431 genomes.203

Genome RUG005 RUG154 RUG431 RUG466
GC-Content Mean / % 48.935 44.288 51.058 57.949
GC-Content SD 2.4090 1.1743 1.9024 2.3720

Table 5. Table showing the GC-Content means and Standard Deviations per genome.
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Metrics204

While it is not possible to compare the N50 and L90 metrics found in Table 6, because of the differing205

numbers of contigs in each FastA file, it is possible to compare the L50 metrics. The RUG466 genome206

has the highest L50 value, as well as the lowest N50 and N90 values. This implies that the RUG466207

genome has been assembled from shorter and therefore less accurate reads compared to the others. This is208

consistent with genome having the highest mean average GC-Content (Table 5), which might be expected209

given the Hi-C-based proximity-guided assembly employed by Stewart et al. (2018).210

Genome RUG005 RUG154 RUG431 RUG466
N50 46061 43578 52738 16904
N90 12229 15257 22961 5244
L50 12 24 15 31

Table 6. Table showing the N50, N90, and L50 metrics for each genome.

Genome Similarity211

Table 7 shows the Manhattan Distance between each of the four genomes. The least similar genomes212

are the RUG466 and RUG154 genomes, with a distance of 1,607,019. This mirrors the findings of213

other metrics which, using GC-Content, showed the RUG466 and RUG154 genomes to be statistically214

heterogenous.215

Genome RUG005 RUG154 RUG431 RUG466
RUG005 0 541788 547265 628785
RUG154 541788 0 456163 1067019
RUG431 547265 456163 0 908798
RUG466 628785 1067019 908798 0

Table 7. The Manhattan distance between each of the four genomes with regards to 2-Mer frequencies.
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A ADDITIONAL GENETIC INVESTIGATIONS EXAMPLES216

$ python3 part_one.py data/gene_1.fa gene_1_output.txt 2217

Listing 1. Example command line input to run part one.py

genome_1.fa218

12.34565432102345219

1.234567654321012220

98765221

12345222

13579223

224

Listing 2. Example contents of an output file generated by part one.py

$ python3 similarity.py distances.csv gene_1_dict.csv gene_2_dict.csv gene_3_dict.csv225

Listing 3. Example command line input to run similarity.py

AAAAAAA,494226

AAAAAAC,329227

AAAAAAG,791228

AAAAAAT,777229

AAAAACA,347230

AAAAACC,275231

AAAAACG,248232

AAAAACT,434233

AAAAAGA,852234

AAAAAGC,654235

AAAAAGG,670236

AAAAAGT,424237

AAAAATA,625238

AAAAATC,663239

AAAAATG,544240

AAAAATT,540241

AAAACAA,211242

AAAACAC,94243

244

Listing 4. Example contents of an output file generated by similarity.py



B FILTERER.PY CODE245

import sys246

import re247

248

249

def filter_bad_matches(filename):250

"""Removes any alignments from a blastx alignment that are above a given threshold251

,252

writes a file with the name of the input file with the ’_filtered.txt’ suffix253

instead254

:param filename: filename of blastx alignments to be filtered by e-value255

:return: good_matches: number of alignments below the threshold value256

:return: bad_matches: number of alignments above the threshold"""257

258

# alter this float to desired value259

threshold = float(1e-5)260

# pattern matches the pairwise alignments produced from a blastx search261

pattern = re.compile(r"ˆ([A-Z0-9]+)\s+([ˆ\n]+)\s+(\d+\.?\d+)\s+([ˆ\n]+)$", re.262

MULTILINE)263

good_matches = 0264

bad_matches = 0265

with open(filename, ’r’) as infile:266

outfile_name = filename.split(’.’)[0] + ’_filtered.txt’267

with open(outfile_name, ’w’) as outfile:268

# could be converted to tqdm (or other) progress bar269

print("Filtering file ...")270

first_line = True271

for i, line in enumerate(infile):272

if line.startswith(’Query=’):273

# we don’t want to start the file with a blank line274

if first_line:275

outfile.write(line)276

first_line = False277

else:278

# but we do want subsequent queries to be separated by a blank279

line280

outfile.write("\n" + line)281

for match in re.finditer(pattern, line):282

# once we have matched a query line, then write all its good283

alignments284

if float(match[4]) < threshold:285

outfile.write(match.group() + "\n")286

good_matches += 1287

else:288

bad_matches += 1289

290

return good_matches, bad_matches291

292

293

if __name__ == ’__main__’:294

good, bad = filter_bad_matches(sys.argv[1])295

print("good: "+str(good)+296

"\nbad: "+str(bad))297

print("Percent Good = "+str(’{0:.2f}’.format(good/(good+bad)*100)))298

299

Listing 5. filterer.py code



C TRIMMER.PY CODE300

import sys301

import re302

303

304

def trim_file(filename):305

"""Trims the Pairwise output file of a blastx search and extracts only the query306

names307

and the list of significant alignments and writes them to a new file308

:param filename: filename of the alignment file to be trimmed"""309

310

pattern = re.compile(r"ˆ([A-Z0-9]{6,})\s+([ˆ\n]+)\s+(\d+\.?\d+)\s+([ˆ/])([ˆ\n]+)$"311

, re.MULTILINE)312

with open(filename, ’r’) as infile:313

outfile_name = filename.split(’.’)[0] + ’_trimmed.txt’314

with open(outfile_name, ’w’) as outfile:315

print("Trimming file ...")316

first_line = True317

for i, line in enumerate(infile):318

if line.startswith(’Query=’):319

if first_line:320

outfile.write(line.strip() + "\n")321

first_line = False322

else:323

outfile.write("\n" + line)324

for match in re.finditer(pattern, line):325

outfile.write(match.group().strip() + "\n")326

327

print("File trimmed!")328

329

330

if __name__ == ’__main__’:331

trim_file(sys.argv[1])332

333

Listing 6. trimmer.py code



D GENOMIC CALCULATOR.PY CODE334

import sys335

import pysam336

import part_one as po337

import re338

339

340

def process_gene_orf_inputs(genome_path, orf_path):341

"""Calls part_one.py to process the FastA file and the corresponding FastA file of342

ORFs343

:param genome_path: path to the FastA genome file, passed as the first cli344

argument345

:param orf_path: path to the FastA genome ORF file, passed as the second cli346

argument347

:return: genome_sequence_names: list of sequence names from the genome FastA file348

:return: orf_sequence_names: list of ORF sequence names from the ORF FastA file349

:return: genome_file: Pysam object representing the genome FastA file350

:return: orf_file: Pysam object representing the ORF FastA file"""351

352

genome_sequence_names = po.get_sequence_names(genome_path)353

orf_sequence_names = po.get_sequence_names(orf_path)354

genome_file = pysam.FastaFile(genome_path)355

orf_file = pysam.FastaFile(orf_path)356

357

return genome_sequence_names, orf_sequence_names, genome_file, orf_file358

359

360

def process_filtered_orf_inputs(filtered_orf_path):361

"""Processes the filtered file of alignments and returns a list of ORFs that had362

at least one363

filtered significant alignment364

:param filtered_orf_path: path to the filtered file of alignments produced by365

blastx,366

filterer.py and trimmer.py367

:return: protein_producers: list of identified ORFs that had at least one filtered368

significant alignment369

:return: chance_orfs: list of identified ORFs that had no filtered significant370

alignments"""371

372

pattern = re.compile(r"ˆ([A-Z0-9]+)\s+([ˆ\n]+)\s+(\d+\.?\d+)\s+([ˆ\n]+)$", re.373

MULTILINE)374

protein_producers = []375

chance_orfs = []376

with open(filtered_orf_path, ’r’) as infile:377

lines = infile.readlines()378

for index, line in enumerate(lines):379

if line.startswith(’Query=’) and lines[index] != lines[len(lines)-1]:380

next_line = lines[index + 1]381

if re.match(pattern, str(next_line)):382

protein_producers.append(line[7:].strip())383

else:384

chance_orfs.append(line[7:].strip())385

386

return protein_producers, chance_orfs387

388

389

def get_average_length_of_protein_cds(protein_producers, orf_file, orf_sequence_names)390

:391

"""Calculates the average length of protein producing ORFs across a genome392

:param protein_producers: list of protein producing ORFs, from393

process_filtered_orf_inputs()394

:param orf_file: file of all identified ORFs, from process_gene_orf_inputs()395

:param orf_sequence_names: list of ORF sequence name strings, from396

process_filtered_orf_inputs()397

:return: float value for the average length of protein coding sequences"""398

399

length_of_protein_cds = 0400

print("orf sequences = " + str(len(orf_sequence_names)))401



print("protein sequences = " + str(len(protein_producers)))402

for sequence in protein_producers:403

for orf in orf_sequence_names:404

if orf.find(sequence) != -1:405

read = orf_file.fetch(orf)406

length_of_protein_cds += len(read)407

408

return length_of_protein_cds / len(protein_producers)409

410

411

def calc_approx_gene_count(genome_length, average_cds_length, orf_length):412

"""Calculates an approximate gene count given the number of protein producing413

coding sequences414

and the total length of all identified ORFs and the total length of the genome in415

base pairs416

:param genome_length: total length of the genome in base pairs, from417

get_num_useful_sequences()418

:param average_cds_length: average length of protein CDS, from419

get_average_length_of_protein_cds()420

:param orf_length: total length of ORFs in base pairs, from421

get_num_useful_sequences()422

:return g: float value of the approximate gene count"""423

424

g = (genome_length / (average_cds_length / (orf_length / genome_length)))425

return g426

427

428

def get_sequence_lengths(genome_sequence_names, orf_sequence_names, genome_file,429

orf_file):430

"""Calculates the total length of ORFs and the total length of the whole genome,431

both in base pairs432

:param genome_sequence_names: list of sequence names from the genome FastA, from433

process_gene_orf_inputs()434

:param orf_sequence_names: list of sequence names from the ORF FastA, from435

process_gene_orf_inputs()436

:param genome_file: Pysam object representing the genome FastA file, from437

process_gene_orf_inputs()438

:param orf_file: Pysam object representing the ORF FastA, from439

process_gene_orf_inputs()440

:return genome_length: total length of the genome in base pairs441

:return orf_length: total length of all identified ORFs in base pairs"""442

443

genome_length = 0444

orf_length = 0445

446

for sequence_name in genome_sequence_names:447

read = genome_file.fetch(sequence_name)448

genome_length += len(read)449

450

for sequence_name in orf_sequence_names:451

read = orf_file.fetch(sequence_name)452

orf_length += len(read)453

454

return genome_length, orf_length455

456

457

if __name__ == ’__main__’:458

(genome_sequence_names, orf_sequence_names,459

genome_file, orf_file) = process_gene_orf_inputs(sys.argv[1], sys.argv[2])460

461

genome_length, orf_length = get_sequence_lengths(genome_sequence_names,462

orf_sequence_names,463

genome_file, orf_file)464

# prints the different metrics, aligned to each other by the ’=’ sign for465

readability466

# could be modified to output these in a csv file instead (like part_one.467

write_statistics() does)468

print("total genome length = " + str(genome_length))469

print("total orf length = " + str(orf_length))470

471
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filtered_orf_path = sys.argv[3]472

protein_producers, chance_orfs = process_filtered_orf_inputs(filtered_orf_path)473

474

average_cds_length = get_average_length_of_protein_cds(protein_producers, orf_file475

, orf_sequence_names)476

print("Average protein CDS length = "+str(average_cds_length))477

478

gene_count = calc_approx_gene_count(genome_length, average_cds_length, orf_length)479

print("Gene count = " + str(gene_count))480

Listing 7. genomic calculator.py code
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E EXAMPLE PIPELINE COMMANDS481

This supplemental file shows an example workflow to follow when using the pipeline. These commands482

are applicable to the MacOS zsh 2.14 (452) Terminal, but are translatable to other Unix derived operating483

systems.484

Third Party Command Line Programs485

prodigal -i genome_1.fa -o genome_1.gff3 -f gff486

Listing 8. Example Prodigal Command

bedtools getfasta -fi genome_1.fa -bed genome_1.gff3 -s -fo genome_1.orfs.fa487

Listing 9. Example Bedtools Command

time blastx -query genome_1.fa -db uniprot_sprot -out genome_1_matches.txt488

Listing 10. Example Blast+ Command

Inclusion of the time command is optional, but handy when running larger BLAST+ alignments on less489

powerful hardware. the uniprot sprot database is the Swiss-Prot protein database.490

The Pipeline491

The proprietary Python scripts developed for the pipeline must be located in the same level directory, in492

this example they are all located in the /[my pipeline]/code/ directory. They are all run from the493

top level directory (/[my pipeline]/).494

python3 code/trimmer.py outputs/genome/genome_1_matches.txt495

Listing 11. Example trimmer.py Command

python3 code/filterer.py outputs/genome/genome_1_matches_trimmed.txt496

Listing 12. Example filterer.py Command

python3 code/genomic_calculator.py data/genome/genome_1.fa data/genome/genome_1.orfs.497

fa outputs/genome/genome_1_matches_trimmed_filtered.txt498

Listing 13. Example genomic calculator.py Command

The genomic calculator.py script takes three command line arguments. The first is the path from499

the user’s present working directory to the FastA file containing the genome. The second is the path to the500

FastA file of Open Reading Frames generated by Prodigal and Bedtools. The final argument is the path to501

the trimmed and filtered file of alignments generated by the BLAST+ alignment search. The502

Optional Pipeline Files503

python3 code/splitter.py data/genome/genome_1.fa504

Listing 14. Example splitter.py Command

splitter.py will take a FastA file and divide it into a given number of sequentially numbered FastA505

files - i.e. genome 1.fa becomes: genome 1 1.fa, genome 1 2.fa. This may be needed if the original506

FastA genome file is too large to be processed on the user’s hardware. Through testing a FastA filesize of507

< 5MB was desirable. Above this threshold the Pysam third party library may run out of memory and508

report an unexpected end of file error. If the original FastA file must be processed with the splitter then509

each sequential FastA file must be run through the genomic calculator.py individually, although510

the second and third arguments need not change.511

python3 code/clean_query.py outputs/genome/genome_1_matches_trimmed_filtered.txt512

Listing 15. Example clean query.py Command



The clean query.py and script should be run if there is a mismatch in the sequence names between513

the three different files that are input to the genomic calculator.py script. clean query.py514

takes the processed matches trimmed filtered.txt file and renames the sequences to remove515

improper characters, such as any “[]” characters and any characters in between these. This is needed as516

the genomic calculator.py must compare the sequence names for some operations. To change517

what the offending characters are, open clean query.py with a preferred editor and update the RegEx518

pattern variable on line 5.519
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