
An Investigation of Current Machine
Learning Techniques for Predicting Plant

Phenotypes from Genotypes

CS39440 Major Project Report

Author: Felix Andrade May (fea6@aber.ac.uk)

Supervisor: Prof. Reyer Zwiggelaar (rrz@aber.ac.uk)

2024–08–08

Version: 1.1.0 (Release)

This report was submitted as partial fulfilment of a BSc degree in Computer Science
and Artificial Intelligence (with Integrated Year in Industry) (GG47)

Department of Computer Science
Aberystwyth University

Aberystwyth
Ceredigion
SY23 3DB

Wales, U.K.

Declaration of originality

I confirm that:

• This submission is my own work, except where clearly indicated.

• I understand that there are severe penalties for Unacceptable Academic Practice,
which can lead to loss of marks or even the withholding of a degree.

• I have read the regulations on Unacceptable Academic Practice from the
University’s Academic Registry (AR) and the relevant sections of the current
Student Handbook of the Department of Computer Science.

• In submitting this work I understand and agree to abide by the University’s
regulations governing these issues.

Felix Andrade May

2024–08–03

Consent to share this work

By including my name below, I hereby agree to this project’s report and technical work
being made available to other students and academic staff of the Aberystwyth
Computer Science Department.

Felix Andrade May

2024–08–03

Acknowledgements

Melissa

Socks

Reyer Zwiggelaar, for his patience and encouragement

James Strong and Stephen Gow, for their help and knowledge

Abstract

An impending climate crisis and a growing global population are contributing to a
growing demand for energy. Without consideration from governments and industries,
non-renewable resources will continue to be used to fuel economies and to mitigate the
physical effects of shifting climates on populations. Renewable sources of energy are
already being adopted at increasing rates [1, 2], however the long-term maintenance of
these methods is often under-evaluated before implementation. A potential solution to
avoid rising costs of hardware replacement and maintenance is to expand the use of
biofuels, which can be grown on existing farmland across the globe. Miscanthus
sinensis, a perennial grass, is well suited to growing in a wide range of climates. Its high
rate of growth in tight clusters makes Miscanthus sinensis a good candidate for
renewable bioenergy production [3].

Machine Learning (ML) techniques can be used to predict the presence and values of
phenotypes, which are the physical aspects of the plant, the from plant genotypes [4–7].
Without the use of ML models, phenotypes can be hard to predict because of the vast
range of information that can effect them. This information falls into two broad
categories: genomic information, such as the appearance and composition of Single
Nucleotide Polymorphisms (SNPs) in the genome; and the environmental information,
which incorporates all the non-genomic information such as the amount of available
nutrients in soil or environmental stresses such as strong winds and storms. By
applying ML methods to a dataset of Miscanthus sinensis genotypes and phenotypes a
better understanding of the relationship between the genetic composition of the plant
and the phenotypes can be gained. This improved knowledge would allow for selective
breeding and hybridisation of Miscanthus sinensis by industrial growers to improve the
growth time, yield, and environmental resistance of the plant, subsequently increasing
the potential amount of renewable biofuels that can be produced from the plant.

This paper describes the development and evaluation of eight ML models, as well as
Command Line Interface (CLI) programs to run the models and the development
process used in their creation. The models were trained on a dataset of 110 Miscanthus
sinensis genomes,containing 13,630 Single Nucleotide Polymorphisms each, to identify
the measured values of thirteen Miscanthus sinensis phenotypes. Ridge Regression (RR)
(µR2 = 0.26; µRecall = 0.31) and Support Vector Machines (SVMs) (µR2 = 0.24− 0.34;
µRecall = 0.28− 0.30) were most effective at predicting phenotypic values compared to
Artificial Neural Networks (ANNs) and other linear models, with high recall rates
(> 0.70) achieved by the SVM models in some scenarios.

Contents

1 Introduction 1

2 Methods and Methodologies 3
2.1 The Data . 3
2.2 The Environment . 4
2.3 The Models . 5

2.3.1 Model Specifications . 7
2.4 Software Development . 12

2.4.1 Project Management . 12
2.4.2 Research and Software Development Approach 15

3 Results and Discussion 16
3.1 Results . 16

3.1.1 Average Senesence (AvgeSen) . 18
3.1.2 Base Diameter (BaseDiameter) . 20
3.1.3 Canopy Heights . 21
3.1.4 Day of the year that Flowering Stage One was observed (DOYFS1) 22
3.1.5 Dry Matter (DryMatter) . 23
3.1.6 Day of the year that Emergence Stage Four was observed (es.4.doy) 25
3.1.7 Maximum Observed Canopy Height (MaxCanopyHeight) 26
3.1.8 Moisture (Moisture) . 26
3.1.9 Stem Diameter (StemDiameter) . 28
3.1.10 Tallest Stem (TallestStem) . 29
3.1.11 Transect Count (TransectCount) . 29

3.2 Discussion . 31
3.3 Conclusion . 34

4 Evaluation and Reflection 35
4.1 Data Acquisition . 35
4.2 Software Development . 36
4.3 The Python and R Languages . 38
4.4 Model Improvements . 39
4.5 Reflection . 40

References 41

Appendices 47

A Use of Third-Party Code, Libraries and Generative AI 49
1.1 Third Party Code and Software Libraries 49

1.1.1 Third Party Software . 49
1.1.2 Python Libraries . 49

1.2 Generative AI . 50

B Code Excerpts 51
2.1 Docker . 51

i

2.2 Scripts . 52
2.3 Python . 54

C Phenotype Dataset Description 55

D Model Confusion Matrices by Phenotype 59

ii

Chapter 1 Introduction

Chapter 1

Introduction

As the global population grows so does the demand for the production of energy.
Combined with a shifting climate, the need to improve sources of renewable energy
becomes ever more important. Miscanthus sinensis is a perennial flowering grass native
to east Asia. It’s ability to grow quickly and in dense clusters, even in high-stress
environments, makes it a good candidate for renewable bioenergy production [3].

Machine Learning (ML) is the application of algorithms to optimise a solution from a
given input and from experience, which is previous information given to the algorithm.
This information is typically in the form of pre-labelled information, like information
plaques in a museum. These algorithms are defined by sets of parameters which can be
tuned to improve the ability of the algorithm to optimise the solution. An algorithm that
has been trained on the input data becomes a model which can be given new, unseen,
data from which it will attempt to predict an outcome. This form of learning is called
supervised learning, which differs from the semi-supervised paradigm, where only
some of the training data is labelled, and unsupervised learning paradigm, where none
of the training data is labelled [8].

Better understanding the link between the genotypes of plants and their phenotypes
will improve our ability to selectively breed crops to improve yields, decrease growing
times, and improve disease resistance. Machine Learning (ML) techniques have proved
useful for genotype to phenotype prediction in plants [4–7]. Phenotypes, the physical
aspects of an organism, can be hard to predict without the use of ML due to the wide
ranging amount of information which contributes to their manifestation. This
information falls into two categories, genomic information and environmental
information. Genomic information is any information contained within the organism’s
biology, such as the appearance and content of Single Nucleotide Polymorphisms
(SNPs) in the genome. This paper looks only at the influence and relation of genomic
information to phenotypes. The second category,environmental information, is any
non-genomic information that could effect the manifestation of phenotypes, such as the
available nutrients in growing stages, or the amount of available sunlight. It also
encompasses environmental stresses such as, in the case of plants, strong winds and
storms which may damage the plant or hinder its development, thus altering its
phenotypes. If a model that accurately estimates phenotype values from the genotype
can be developed, then it can be employed both in the renewable biofuel fuel industry

1 of 65

Chapter 1 Introduction

as well as in further research. As the cost of commercially sequencing whole plant
genotypes continues to decrease towards and past the $1,000 (USD) mark [9], a
generally effective model for phenotype from genotype predictions would allow
sufficiently motivated industrial growers to better understand why and how their crops
grow. By sequencing their bioenergy crop and training a model on the physical
properties of the same sampled crops, industrial growers would be able to combine the
traits of the different plants, through either genetic modification or traditional selective
breeding. As an example, an industrial grower who has two fields of the same crop may
find they have a field that grows tall and fast and a field that grows slow and stout. The
industrial grower may want to identify the genotypes that contribute to the
manifestation of these phenotypes. If a model exists that can accurately predict
quantitative phenotypic values from the genotype, then the industrial grower will be
able to splice the plants of these two fields together to produce a plant that grows
quickly into a tall and sturdy crop. In the case of bioenergy, this would allow the grower
to increase the yield of their crops and subsequently sell them for a greater commercial
profit from the same acreage as before. This increased yield would also increase the
potential amount of renewable biofuels that could be produced and utilised in the
energy production and transport sectors, helping companies, local governments, and
national governments actually achieve their every approaching climate targets.

This paper uses a genome wide study of Miscanthus sinensis combined with physical
measurements of thirteen phenotypes. Eight Machine Learning regression techniques,
including a Ridge Regression (RR) model which was used as a baseline comparator,
were developed and trained to predict the quantitative values of the phenotypes from
the genomic information. The ability of the models was assessed by evaluating the
models’ R2, recall rate, and confusion matrices. The average performance of the models
in those metrics can be used to infer a correlation between the genomic composition of
the plants and their physical attributes. This can be done because a trait which models
consistently perform poorly in can be said to have little correlation to the genomic
aspect of the plant and instead may be far more correlated to the environmental aspects
the plant existed within, though this paper does not take the environmental aspects into
consideration. A Ridge Regression (RR) model was used to set a baseline ability, as the
linear Ridge Regression model is equivalent to a BLUP model [10, 11], one of the more
popular models employed in the field of bioinformatic prediction.

A range of agile techniques [12] were used to manage the project. KanBan boards with
WiP limits of five were created to both organise and limit the active workload. Epics
outlined in a project overview were used to create more specific and detailed cases that
were worked on during informal sprints. Version control services BitBucket, Git, and
Gitk were used in combination with the project management service Jira to manage,
host, and maintain the project [13–15].

2 of 65

Chapter 2 Methods and Methodologies

Chapter 2

Methods and Methodologies

2.1 The Data

Models were trained on a genetic wide dataset of Miscanthus sinensis grass, composed
of two linked datasets. The data originates from a Near Infra-red Spectrum (NIRS)
study of the grass [16, 17]. The first dataset contains Phenotype information, with
records for thirteen phenotypes: Average Senesence (AvgeSen); Base Diameter
(BaseDiameter); Canopy Height on day 119, 158, and 176 of the year 2008 CanHght.119,
CanHght.158, CanHght.176; Day of the year that Flowering Stage One was observed
(DOYFS1); Dry Matter (DryMatter); Day of the year that Emergence Stage Four was
observed (es.4.doy); Maximum Observed Canopy Height (MaxCanopyHeight);
Moisture (Moisture); Stem Diameter (StemDiameter); Tallest Stem (TallestStem);
Transect Count (TransectCount). This phenotype information is supported by some
additional auxiliary information about the Replicate Block, Field Order, Plant Block Row
Position, Plant Block Column Position, Species, Genotypic Plate ID Number, Order,
Hierarchical Population Genetic Structure, Growing Longitude, Growing Latitude, and
Growing Altitude. There is also a record of the SNP Genotype, represented using an
identifier such as Mb-000. A similar series exists in the second part of the Miscanthus
data. This makes it possible for the two files to be linked and aligned, so that the first
row of SNP information is corresponds to the first row of phenotypes. The Phenotype
dataset consist of 552 entries each with values for the twelve auxiliary information and
thirteen Phenotypes listed above as well as a column for the SNP Genotype codes. Each
of the 138 SNP Genotypes is represented four times in this dataset because the samples
were cut into four segments during collection. It should be noted that some Genotypes
present in the Phenotype dataset are not represented in the SNP Genotype dataset. A
description of each of the phenotypes can be found in Table C.1, Appendix C.

The second part of the Miscanthus sinensis data is a dataset of of 861 SNP Genotypes.
Each SNP is encoded using the presence of 13,630 non-reference (minor) alleles which
are given a value of 0, 1, or 2. That is: from a reference SNP allele, if there is one
mutation, the column will be marked as 1, as demonstrated in Table 2.1. While this data
originally contained 861 entries, this was reduced to 110 entries using a short Python
script [Listing B.5] to filter out any SNP Genotypes that did not appear in the Phenotype

3 of 65

Chapter 2 Methods and Methodologies

Actual SNP Numeric Encoding
AA* 0
AT 1
CT 2
CC 2
CA 1
AA 0

Table 2.1: How SNPs are numerically encoded. In this example, the first SNP (AA), is the
reference SNP and the following SNPs are measured against it.

dataset. Due to the construction of these two datasets, no further feature selection was
performed on the SNP Genotypes dataset before being passed to the models.

2.2 The Environment

Models were run in a containerised environment using Docker [18]. A script
(start container.sh [Listing B.2]) is used to build and start the environment
container. The script begins by building a Docker Image from the Dockerfile
[Listing B.1]. The Dockerfile contains the build instructions to create a Docker Image
running the Ubuntu Noble 24.04 operating system, with several packages installed,
including: Python3.12, pip, vim, wget, and their dependencies. The Dockerfile also uses
pip to install the Python packages necessary for the models to run, including SK-Learn,
Keras, and Pandas [19–22]. A single script was chosen for this process as it greatly
simplifies the start-up experience for the user, requiring them to only run one command
in the CLI compared to the five long and repetitive commands required to complete the
process. From here on, this testing and development container will be referred to as ‘the
container’.

Docker was chosen as it is a lightweight and easy to install technology; requiring only
an installation of the Docker Engine, which can be done by downloading the Docker
Desktop client [23]. By containerising the development and testing environment we are
able to run each model in as identical an environment as possible each time. It also
allows for others to easily run the models, as every third party library or package is
installed into the container when it is built, rather than requiring them to be manually
installed by the user on their own machine.

Each time a new package or library was needed for development, a new container
would be built. The new package would then be manually installed into this container
from the attached Command Line Interface (CLI) and verified. Once the installation
process was confirmed, the same steps could be added into the Dockerfile itself. After
this, the container would be built again and the same manual verification would take
place to ensure the correct third party packages and dependencies had been installed.
While conventional unit testing of a Dockerfile is possible [24–26], I decided that the
simplicity of the requirements for the Dockerfile as well as the static nature of the file
outweighed the complexity of these third party unit testing solutions. When the changes
had been made, the version variable of start container.sh would be incremented

4 of 65

Chapter 2 Methods and Methodologies

by one to mark the update.

2.3 The Models

Once the container had been initialised and entered through the CLI, models can be run
using PROject moDELS (PRODELS) [B.4]. This is a simple script that accepts several
predefined flags to define the input arguments. By using flags it makes entering the
correct arguments easier for the user, because they can be entered in any order, and then
PRODELS will pass the arguments to the model in the correct order. If the models were
instead run directly by calling Python, then each of the arguments would have to be
entered into the CLI in the same order the program expects every time it needed to be
run. PRODELS also provides a ‘help’ flag, which displays a formatted message to assist
the user in remembering the program’s flags and the arguments for each flag, as seen in
Listing 2.1.

PRODELS - PROject moDELS 0.7.1

Usage: prodels [options] [file ..] runs a given model on given datasets

Arguments:
-d {0|1}, 0 by default runs the model in debug mode if set to 1
-h, displays this helpful message :)
-m (with file name), the name of the Model to train
-o (with file name), the name of the directory with /environment/outputs/
to write results to, does not need to exist
-p (with file name), the full path of the Phenotype CSV dataset
-s (with file name), the full path of the SNP CSV dataset
-v, displays the program version

Listing 2.1: The message displayed after running ./prodels -h

The models were developed using Python, which was chosen as it is a lightweight, but
powerful, programming language that specialises in scientific programming. The
dynamically typed syntax and focus on whitespace makes the language easier to read
for non-software-developers in a print format such as this. Python also includes a large
standard library and makes it easy to install more packages to the system by using the
pip package manager [27]. Compared to other languages that are popular in the field of
Phenotype prediction, namely R [28], Python is more versatile and has a simpler
installation process across a wide range of Operating Systems compared to R. Although
the process can be somewhat automated within R scripts themselves, the installation of
third-party libraries to Python is also simpler and more efficient compared to R. This
makes it a sensible choice to use within the container.

Two utility files were created to aid in the function of the models. One file,
process.py, contains a selection of methods responsible for loading and configuring
the data, as well as creating plots and graphs such as confusion matrices and diagrams
of the decision tree and Artificial Neural Network (ANN) models. This file is tested with
the PyTest library [29], which is an open-source testing framework for Python. It
provides a detailed and easy to read output compared to the output produced by
Python and the unittest package. The tests are run through another script, run tests,

5 of 65

Chapter 2 Methods and Methodologies

which runs the test files themselves with the -v option to return a more detailed,
verbose, log of test results back to the CLI. process.py also creates confusion matrices
for each phenotype, these are saved to a directory called cmats, which is found in the
output directory given to PRODELS by the user. The second file, write files.py is
responsible for writing any new files created as a result of running a model. It will
automatically create any needed directories that do not yet exist within the container
before writing files to them. In order to save these output files to the host machine the
user must use Docker to copy the files out, which can be done using the docker cp
command [Listing B.3]

The two datasets were processed using the Pandas library [21]. Pandas is an
open-source data analysis package for Python and was chosen primarily for its
DataFrame class [30]. DataFrames are fast and efficient objects that form a key feature of
Pandas, they allow for much more efficient data processing and manipulation than
Python’s own dictionaries and multi-dimensional lists. The datasets are read into the
models using Panda’s read csv function. This reads a Comma-separated Value (CSV)
file into the program as a DataFrame. Two other functions in process.py are then
called upon to perform additional pre-processing of the data, these align the DataFrames
by the ‘geno’ column and replace all N/A values with 0s. These pre-processing
functions also rely on calls to Pandas functions designed for such implementations.

Two primary libraries were used in the creation of the machine learning models. The
Ridge Regression (RR), Decision Tree, Least Absolute Shrinkage and Selection Operator
(Lasso), and Support Vector Regression (SVR) Models utilise the Scikit Learn library [19]
for the model architecture itself. The three Artificial Neural Networks (ANNs) are built
using Keras [20]. Each model was tuned using Scikit Learn’s GridSearchCV
function [31]. A five fold cross-validation was performed with a range of possible
parameter values specific to each model. Once this was complete and the results of the
best model were written to the output file for each phenotype, the median value for each
parameter would be used to train and fit the model again for a final time, the results of
these models are shown in Chapter 3. If there was no clear median value, a mean value
would calculated and implemented instead. A median value was chosen for the final
model as each model was trained and evaluated against each Phenotype separately.
Because of this, the most common results of all cross-validation parameter selections
should be consolidated into a single model that will be trained and evaluated on each
Phenotype again for the final results, as this would be the most representative set of
parameters for the model. Some parameters that are common to all or most of the Scikit
Learn models, such as ‘tolerance’, were eliminated as tuneable parameters early on in
the model refinement process for having little impact on model performance and were
excluded from further development. Many of Scikit Learn’s models and utility functions
also provide a ‘random state’ parameter; in all cases where this was a valid parameter
the value was set to 611, to ensure the model’s architecture and results are reproducible.

The performance of the models was evaluated using two primary metrics, the R2 and
the recall rate. The R2 was also calculated using Scikit Learn [32]. Because the R2

measures the ability of linear regressors, some of which do not include a y intercept, the
best possible R2 would be a value of 1.0, however the R2 can be infinitely negative
because the model can be arbitrarily worse. The recall rate is calculated as the ratio
between the number of true positive predictions to the sum of true positives and false

6 of 65

Chapter 2 Methods and Methodologies

negatives predictions. The rates of true positives and false negatives are calculated from
the confusion matrix created by the process.py. The recall rate is strictly positive, so
the best possible value is 1 while the worst possible score is only 0. The confusion
matrices are also used to assess the performance, and can be found in Appendix D.

Scikit Learn is an open-source machine learning library for Python that offers a wide
range of linear and non-linear models, scoring functions, and utility functions. The
models are highly tuneable, particularly when used in combination with the library’s
GridSearchCV [31] function, which allows for arrays of parameters to be exhaustively
searched through. Once the grid search is complete a single model is returned using the
combination of parameters that produced the best model on the data using the specified
scoring metric. Scikit Learn also provides a large selection of scoring metrics for
models [33]. Because these metrics only require an array of true values and predicted
values they can be used to score both Scikit Learn based models, as well as models built
from other libraries, such as Keras.

Keras is a lightweight machine learning library for Python specialising in neural
network architectures. Keras provides a frontend that can be configured to work with a
range of popular machine learning frameworks such as TensorFlow, JAX, and PyTorch.
The accessible API of Keras also makes it possible for custom nodes to be used in an
ANN’s layers. This was important when it came to developing the Radial Basis
Function (RBF) Neural Network model.

2.3.1 Model Specifications

Ridge Regression Model
The Best Linear Unbiased Predictor (BLUP) model is a long standing method for

genomic prediction. Made popular in the field of genomic prediction by Meuwissen et
al. [10], BLUP relies on Genetic Breeding Values (GBV) to define the covariance between
known relatives. When these variances are made to be equal to each other, and a
uniform prior is applied to the prior distribution, BLUP is equivalent to a Ridge
Regression (RR) model [11]. The Ridge Regression model, implemented with Scikit
Learn, uses a linear least squares algorithm with L2 regularisation to minimise the
objective function seen in Equation 1 [34].

||y −Xw||22 + alpha ∗ ||w||22 (1)

Another key model in this field is the BayesB model [10]. This form of Bayesian
prediction makes use of statistical sampling methods, often Gibbs sampling, to inform
the Bayesian priors. Previous work has shown Ridge Regression to be as effective in
Genomic prediction as BayesB [35–39]. As a result, this Ridge Regression model will be
used as a baseline comparator in Chapter 3 because it is an appropriate approximation
of the ability and function of the two most popular ML models in the field. The full
parameters of the model can be seen in Table 2.2.

7 of 65

Chapter 2 Methods and Methodologies

Parameter Cross-Validation Values Final Configuration
Alpha 0.001, 0.01, 0.1, 1, 10, 100, 1000 1000
Copy X True True
Fit Intercept False, True False
Max Iterations None None
Positive False False
Random State 611 611
Solver svd, cholesky, lsqr, sparse cg, sag, saga, lbfgs saga
Tolerance 0.0001 0.0001

Table 2.2: Ridge Regression model parameters

Decision Tree Model
Decision trees are simple and, when charted, human-readable models. Not

traditionally used in the field of bioinformatics, the Decision Tree model has been
included in case it proves to be a useful yet unexplored method for the prediction of
plant phenotypes. Through exhaustive grid-search cross-validation, trees were pruned
by limiting the depth of the tree to eight leaf nodes, and requiring a minimum of eleven
samples per leaf node. See Figure 2.3 for the full parameters of the model.

Parameter Cross-Validation Values Final Configuration
Criterion Squared Error Squared Error
Max Depth 2,4,6,8,10,15,20 8
Max Features None None
Max Leaf Nodes None None
Min Cost-Complexity Pruning 0 0
Min Impurity Decrease 0 0
Min Samples per Leaf 1,5,10,20,30,40 11
Min Samples per Split 2 2
Min Weight Fraction per Leaf 0 0
Monotonicity Constraint None None
Random State 611 611
Splitter Best, Random Best

Table 2.3: Decision Tree model parameters

The Decision Tree model also makes use of the make tree and write tree functions
from the auxiliary files. These functions take the final state of the model for each
phenotype and will write a diagram of the model to a directory called dtree in the
output directory given as an argument to PRODELS.

Least Absolute Shrinkage and Selection Operator (Lasso) Model
Least Absolute Shrinkage and Selection Operator (Lasso) models [40] have previously

been used in the context of animal breeding [41–43], and have served as the foundation
for the creation of new linear models [44]. Implemented in this paper using Scikit Learn,
three different Lasso architectures (Lasso, LassoLars (Lasso with Least Angle
Regression), LassoLarsIC (Lasso with Lars and Information-criteria) [45–47]) were

8 of 65

Chapter 2 Methods and Methodologies

evaluated. Evaluation found that the LassoLarsIC model performed better on the
whole, with an R2 (0.27) equal to the other models but a higher mean recall rate (0.29)
compared to the Lasso (0.25) and LassoLars models (0.25).

(a) (b)

Figure 2.1: The recall rate (a) and the R2 (b) of each Lasso model by Phenotype.

The LassoLarsIC model differs from a traditional Lasso or LassoLars by making use of
the Bayes Information criterion (BIC) to decide the Alpha parameter of the model. The
BIC is defined by −2 log(L̂) + log(N)d, where N is the number of features. This is a more
efficient method, computationally, for selecting the Alpha compared to a standard
cross-validation method.

Parameter Cross-Validation Values Final Configuration
Criterion AIC, BIC BIC
Fit Intercept True, False True
Precompute Auto Auto
Max Iterations 500 500
Eps 2.220446049250313e-16 2.220446049250313e-16
Copy X True True
Positive False False
Noise Variance None, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 0.1

Table 2.4: LassoLarsIC model parameters.

Support Vector Regression (SVR) Model
Support Vector Machine (SVM) models are a cost-effective alternative to large neural

networks. SVMs have previously been used to predict continuous phenotype values
from Pearson ranked SNPs [48, 49]. A Radial Basis Function (RBF) kernel function, with
a regularisation parameter (C) of 100 was found to be most effective at predicting the
phenotype values. The regularisation parameter (C) is a squared L2 (Euclidian Length)

9 of 65

Chapter 2 Methods and Methodologies

penalty. The strength of the regularisation performed by C is inversely proportional to
the value given to the model.

Parameter Cross-Validation Values Final Configuration
Kernel Linear,Poly,RBF,Sigmoid RBF
Degree 1,3,5,10,50 N/A
Gamma Scale,Auto Scale
Coefficient of 0 0 N/A
Tolerance 1e− 3 1e− 3
C 0.001, 0.01, 0.1, 1, 10, 100, 1000 100
Epsilon 0.0001, 0.001, 0.01, 1 1
Cache Size 200 200
Max Iterations -1 -1

Table 2.5: SVR model parameters

NuSVR Model
The NuSVR model is an alternative SVM that uses a new parameter (Nu) to determine

the number of support vectors. Nu replaces the Epsilon parameter of the traditional
SVR model. The NuSVR implementation in Scikit Learn is based on LibSVM [50].
Although it is not substantially different from the above SVR model, the Nu parameter
may prove to make the SVM model more effective at phenotype prediction.

Parameter Cross-Validation Values Final Configuration
Nu 0.1, 0.3, 0.5, 0.7, 0.9 0.5
C 0.001, 0.01, 0.1, 1, 10, 100, 1000 100
Kernel Linear, Poly, RBF, Sigmoid, RBF
Degree 1, 3, 5, 10, 50 N/A
Gamma Scale, Auto Scale
Coefficient of 0 0 N/A
Shrinking True True
Cache Size 200 200
Max Iterations -1 -1

Table 2.6: NuSVR model parameters

LinearSVR Model
The LinearSVR model is implemented with LibLinear [51] via Scikit Learn, rather

than LibSVM. Although the model only supports a linear kernel, the difference in base
architecture makes it an interesting comparison in model performance. Testing found
the model performed best with an epsilon insensitive loss function, a C value of 1 and
an epsilon of 0. The full details of the model can be found in Table 2.7.

Feed Forward Neural Network (FFNN)
To represent Artificial Neural Networks in general, a simple Feed Forward network

was developed using Keras. The model features a 1,363 node input layer, the output of

10 of 65

Chapter 2 Methods and Methodologies

Parameter Cross-Validation Values Final Configuration
Epsilon 0 0
Tolerance 1e-4 1e-4
C 0.001, 0.01, 0.1, 1, 10, 100, 1000 1
Loss L1, L2 L1
Fit Intercept True, False False
Intercept Scaling 1 1
Dual Auto Dual
Random State 611 611
Max Iterations 1000 1000

Table 2.7: LinearSVR model parameters

which is passed through a flattening layer and a dropout layer with a rate of 0.3. This
dropout repeats after each hidden layer as well. The model has two hidden layers of 64
nodes each, which pass results to a single node output. The FFNN model uses a
Rectified Linear Unit (ReLU) activation function at each layer. 1,363 input nodes were
used instead of 13,630, which would match the input shape of the SNP dataset, due to
memory limitations of the hardware. As a value, 1,363 mirrors the binning method
employed for creating confusion matrices and calculating the number of true positives,
false positives, and the recall rate. 25 epochs and a batch size of 32 were used during the
training of the FFNN. The FFNN model uses a mean squared error loss function. The
model was optimised using the Keras implementation of the Adam algorithm [52].
Adam is first-order stochastic gradient descent method [53].

Convolution Neural Network (CVNN)
Convolution Neural Networks (CVNNs) are a popular form of ANN. The

implementation of a CVNN in this paper is inspired by the Local Convolution Neural
Network [54]. The input layer is a One Dimensional Conventional [55] layer of 13,630
nodes with one filter in the convolution and a convolutional window size of ten. The
outputs of the convolutional input layer are flattened and passed through a dropout
layer with a rate of 0.3 to the 2 hidden layers of 64 nodes each. The hidden layers also
use a ReLU activation function and the output of each layer passes through a dropout
layer with a rate of 0.3 before being passed to the single node output layer. The loss
function for the CVNN is also the mean squared error. The model was also optimised
using the Keras implementation of the Adam algorithm. The structure of this model and
the FFNN can be found in Figure 2.2.

Radial Basis Function Network (RBFN)
Radial Basis Function Networks (RBFNs) have previously been shown to perform

well in biocomputational research [56, 57]. Keras currently provides no Radial Basis
Function (RBF) layer, however their accessible API has allowed for the creation of an
RBF layer by Petra Vidnerová [58], which was modified to work with the changes made
to the API and Keras backend in Keras3 [59].

This implementation of the model uses a RBF layer as the input, with random initial

11 of 65

Chapter 2 Methods and Methodologies

centroids. A dropout of 0.2 is performed on the output of this layer before it is passed to
the single node output. This output layer uses a sigmoid activation function. The model
makes use of the Adam optimiser with a learning rate of 0.0001 and uses the mean
squared error loss.

Due to hardware limitations, no results could be obtained from this model.

(a) (b)

Figure 2.2: (a): Structure of the FFNN model. (b): Structure of the CVNN model.

2.4 Software Development

2.4.1 Project Management

To manage the project I chose to use Atlassian’s Jira and BitBucket services [13, 15]. Jira
is a project management service while BitBucket is a Git-based repository hosting
service. I chose to use these services as I have experience using them during my
industrial year placement to develop large-scale projects. When first beginning the
project I was experimenting with using GitHub, but found the integration between Jira
and BitBucket was far more seamless and efficient than on GitHub.

Because both services are produced by Atlassian, they offer a wide array of integrations.

12 of 65

Chapter 2 Methods and Methodologies

For example, when creating a work case on Jira, you can automatically link that case to a
Git branch. When a case is created it is assigned an alphanumeric identifier, for this
project that took the form MAJ-000. When creating a branch from a case, the branch is
given a matching identifier, with the case name appended to the end in kebab case, so:
MAJ-000-test-functions. Combined with BitBucket’s clear pull request and code
review UI the task of managing multiple open branches is made much easier.

(a)

(b)

Figure 2.3: (a): A Jira case. (b): The list of branches associated with a case.

At the CLI level, Gitk [14] was used to view the Git history of the project. Gitk visualises
the commit graph and shows additional information such as author, commit message,
tags, branch names, as well as the time and date of each commit. Selecting a commit
shows a list of the modified files, and a preview of the changes in the file. Figure 2.4
shows the Gitk interface. The commit graph appears in the top left, with the date and
author of the commit to the right. Beneath this is the file list and file difference for the
selected commit. Between these fields, the selected commit’s SHA 1D hash is shown, as
well as a search field which can be used to search for specific lines of code in the commit
history.

During the course of this project I used KanBan style boards to manage my caseload.
When a case was created it would be placed into the ‘To Do’ category. This category of

13 of 65

Chapter 2 Methods and Methodologies

Figure 2.4: The window produced by running gitk --all in the CLI, showing the
commit history between 04-03-2024 and 17-04-2024.

the board had no limit on the number of items. ‘To Do’ cases would progress to
‘Planning’ cases if some work had been begun on them, or an plan for how to go about
the case was being created, then once work started on a case it would progress to the ‘In
Progress’ category. Both of these categories had a maximum limit of five cases at a time.
A case could be moved to the unlimited ‘On Hold’ category from any other category if,
for example, that work had been abandoned in favour of another approach or if the case
had sat in the ‘Planning’ or ‘In Progress’ category for too long. Once the branch
associated with a case had been merged into the main branch of the project and closed,
the case could be moved to the final ‘Done’ category. This workflow can be seen in
Figure 2.5.

Figure 2.5: The workflow that was created for the project on Jira.

At the start of the project, a set of Epics were created outlining the key goals of the
project, any case that was created would be linked to one of these Epics. The key dates
of the project were then set as releases in Jira, which could be viewed through the
‘Timeline’ view in Jira [Figure 2.6]. This also helped to keep the workload manageable
as it provided a quick way to prioritise cases by which Epic’s deadline was more urgent.

14 of 65

Chapter 2 Methods and Methodologies

Figure 2.6: Timeline of the project’s Epics.

2.4.2 Research and Software Development Approach

I had no prior experience with Scikit Learn before this project. To familiarise myself
with the library I began by reading through the documentation, making use of sections
of example code, to begin developing a simple model. This model served as a way for
me to experiment with the syntax and the logic of Scikit Learn. Once the desired
functionality had been developed into this simple model I could extrapolate the
different processes into distinct functions for future use. I could then use this simple
model as a guide for the development of new models, following the same pattern to
simplify the development process. By simplifying the development process I was also
able to make the maintenance of models easier as they all follow the same basic
structure.

To select what models I used I would find papers which analysed the ability of several
models, or papers which covered topics at a higher level. While reading these, I would
select citations that would provide more insight into specific models or areas of the field
that seemed like common knowledge.

During the development process I investigated the potential of implementing a BayesB
model [10]. To do this I looked at a few different Python libraries before deciding
PyMC3 [60] would be the best for this project. After creating a Gibbs sampler [61] using
PyMC3 I chose to end work to implement a BayesB model using PyMC3 and Scikit
Learn as I decided the time would be better spent on other cases, so it was put ‘On
Hold’.

15 of 65

Chapter 3 Results and Discussion

Chapter 3

Results and Discussion

3.1 Results

Table 3.1 shows the highest, lowest, and mean R2 scores for each learner. The three SVRs
models returned the highest overall R2 scores (0.75, 0.75, 0.70) when estimating the
Moisture trait. Interestingly, this is also the trait that the Decision Tree, FFNN,
LassoLarsIC, and Ridge Regression models received their highest R2 from predicting.
While the highest R2 for the CVNN came from the Average Senescence category. The
CVNN is the most consistent in its ability to predict phenotype values, with the lowest
Standard Deviation (SD) between R2 of any model, despite it also having one of the
lowest mean R2. This suggests that the model is consistently bad at prediction. This
understanding of the CVNN’s model ability is reinforced by the model also having
lowest mean recall rate (0.25) [Table 3.2]. Because the R2 can be infinitely negative, the
SD of the R2 value is larger than that of the recall rate despite many of the values being
similar in their range. Despite this there is not a significant difference between the
baseline model and the CVNN model which had the lowest mean (T (24) = −0.455;
P = 0.327), so it can be said that all of the models are homogenous when evaluated by
the R2 metric.

Compared to the baseline Ridge Regression model, most of the models returned higher
R2 values. The Decision Tree model and the CVNN models both returned lower means
and maximum R2 values compared to the baseline [Table 3.1]. The Decision Tree model
also underperformed in its mean and maximum recall rates compared to the Ridge
Regression model [Table 3.2], however, the CVNN model performed similarly to the
Ridge Regression model, with only a lower mean recall rate.

The recall rate, shown in Table 3.2, helps to provide a more informed understanding of
the different models’ performances. The SVR model still scores the highest recall (0.79),
however, the highest recall rate of the Decision Tree model (0.74) is not statistically
insignificant in comparison (FMax = 1.07). Compared to the baseline set by the Ridge
Regression model all other models underperformed, with mean recall rates not
significantly lower than those of the Ridge Regression model with a T -Value of
T (24) = −1.144 and a P -Value of P = 0.132 as calculated between the baseline Ridge
Regression model and the model with the lowest mean recall rate (CVNN at 0.25).

16 of 65

Chapter 3 Results and Discussion

Model Highest R2 Mean R2 Lowest R2 SD
Ridge Regression 0.59 0.26 -0.22 0.29
Decision Tree 0.53 0.21 -0.40 0.24
LassoLarsIC 0.68 0.27 -0.46 0.34
SVR 0.75 0.28 -0.41 0.30
NuSVR 0.75 0.32 -0.12 0.27
LinearSVR 0.70 0.24 -0.54 0.36
FFNN 0.70 0.31 -0.26 0.31
CVNN 0.53 0.21 -0.21 0.20

Table 3.1: Highest, Lowest, Mean R2 Scores, and the Standard Deviation of the R2 for
each model.

Figure 3.1: The R2 scores for each model for each phenotype trait.

Model Highest Recall Mean Recall Lowest Recall SD
Ridge Regression 0.64 0.31 0.13 0.13
Decision Tree 0.74 0.27 0.14 0.14
LassoLarsIC 0.57 0.29 0.11 0.13
SVR 0.79 0.28 0.11 0.18
NuSVR 0.66 0.30 0.11 0.15
LinearSVR 0.53 0.28 0.09 0.12
FFNN 0.64 0.27 0.12 0.15
CVNN 0.64 0.25 0.08 0.14

Table 3.2: Highest, Lowest, Mean recall Rates, and Standard Deviation for each model.

As discussed Section 3.2, the best performing trait was the es.4.doy trait. This measures
the day of the year that leaf emergence, or emergence stage four, was recorded. The

17 of 65

Chapter 3 Results and Discussion

Figure 3.2: The recall rates of each model for each phenotype trait.

range of values for this trait is from 77 to 133, giving only 56 possible values. As seen in
Figure 3.3, there are only three predicting values from each model, despite the number
of bins used in the creation of the confusion matrices being ten for each trait. This
suggests that, in addition to there being a limited range of potential values, there is also
a strong correlation between the true values and the SNP configuration for each
genotype.

The same pattern as shown in Figure 3.2 can be seen when inspecting the confusion
matrices produced by the models. Figure 3.4 shows the confusion matrices for each
models’ prediction of the Dry Matter trait. This is the yield of the plant as measured in
grams at the time the sample was harvested. Recall rates for this trait were amongst the
lowest across all models, with the highest rate being 0.18 (Ridge Regression and
Decision Tree) and a lowest recall rate of 0.11 (SVR, NuSVR, and CVNN). Figure 3.2
shows how each model tends to predict a single value, with some variation. The Ridge
Regression, Decision Tree, LassoLarsIC, and LinearSVR models showed the most
variation [Figures 3.4(a), 3.4(b), 3.4(c), 3.4(f)]. These four models were also the four with
the highest recall rates for the trait (0.18, 0.18, 0.14, 0.13). Interestingly, the only one of
these models to also have a high R2 value is the Ridge Regression model, with an R2 of
0.23. The FFNN model had a higher R2 of 0.29 even though it had one of the lowest
recall rates for the DryMatter trait at only 0.12. All of the confusion matrices can be
found in Appendix D.

3.1.1 Average Senesence (AvgeSen)

When predicting the AvgeSen trait, the models performed similarly in both the R2 and
recall metrics, with the NuSVR and LassoLarsIC models performing the best, with an R2

18 of 65

Chapter 3 Results and Discussion

(a) (b)

Figure 3.3: The confusion matrices produced by the SVR model (a) which had the best
recall rate for es.4.doy (0.79), and the LinearSVR model (b) which had the lowest recall
(0.53) of any model when predicting the es.4.doy phenotype trait.

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSVR (f) LinearSVR (g) FFNN (h) CVNN

Figure 3.4: Confusion Matrices for the DryMatter trait.

of 0.60 and 0.58 and recall rates of 0.37 and 0.34 respectively. As shown in Figure 3.5, the
Decision Tree model also performed well, compared to the baseline set by the Ridge
Regression model. The worst performing model for this trait was the SVR model
(R2=0.40, Recall=0.17). This is interesting as the SVR model performed on par with
other models for the other twelve traits, and was the only model to perform this poorly

19 of 65

Chapter 3 Results and Discussion

on the trait, as shown in Figure 3.2 and 3.5. The SVR model did perform somewhat
better when measured by its R2, however it was still the second worst performing
model by this metric.

As shown in Table 3.3 the models performed similarly, though worse than the baseline
in both R2 and recall. These performances suggest that the AvgeSen has some
correlation to the genetic composition, but is also influenced by the environment the
plant existed within before harvest. This shows the Machine Learning models could be
used to select the plants with preferable genomic compositions for future breeding,
especially if combined with models trained on the relation between phenotypic traits
and environmental factors.

Metric Value
RR R2 0.58
RR Recall 0.38
Mean R2 0.50
Mean Recall 0.32

Table 3.3: The mean R2 and recall values for the AvgeSen trait compared to the baseline
values.

Figure 3.5: The R2 and recall values calculated for each model when predicting the Avge-
Sen trait. Horizontal lines show the baseline R2 and recall set by the Ridge Regression
model.

3.1.2 Base Diameter (BaseDiameter)

The BaseDiameter trait was poorly predicted by all models with the baseline R2 set by
the Ridge Regression only reaching 0.12, the fourth lowest baseline R2. Despite this low

20 of 65

Chapter 3 Results and Discussion

score, the only model to outperform the baseline was the NuSVR model (R2=0.16), 3.2
times the mean R2 and 0.19 more than the lowest R2 produced by the Decision Tree
model. The models also perform poorly when measured by recall, with a baseline of
0.20, the second lowest R2 from the Ridge Regression model. As with R2, only the
LassoLarsIC model outperformed the baseline recall rate (0.20) with a recall rate of 0.22.
The SVR, NuSVR, and CVNN models all performed equally to the baseline recall rate,
though the SVR and CVNN models’ R2 values were much lower than the baseline. As
shown in Figure 3.6, the model that performed worst overall at predicting this trait was
the LinearSVR model, which produced the second lowest R2 (0.00) and second lowest
recall rate (0.17). As discussed above the lowest R2 score was given by the Decision Tree
model (-0.03), though the model performed much better when evaluated with recall rate
(0.19). The FFNN had the worst recall rate for the BaseDiameter trait at 0.14, however its
R2 was only the third worst at 0.03.

The poor performance shown by all models when predicting the BaseDiameter trait, as
shown in Figure 3.6, suggests that this trait has little correlation to the genetic
composition of the Miscanthus sinensis samples. This trait may be more influenced by
the environmental factors, though this cannot be said for certain given the results shown
here.

Metric Value
RR R2 0.12
RR Recall 0.20
Mean R2 0.05
Mean Recall 0.19

Table 3.4: The mean R2 and recall values for the BaseDiameter trait compared to the
baseline values.

3.1.3 Canopy Heights

The canopy heights were measured on the 119th, 158th, 176th days of 2008. As shown in
Figure 3.7, the models’ ability to predict the canopy height improved past the 150 day
mark, but fell somewhat when predicting the canopy height after the 175th day. When
predicting the CanHght.119, the recall rates of the LassoLarsIC (0.30) and the CVNN
(0.30) model match the baseline set by the Ridge Regression, however the R2 for these
models was not able to match the baseline R2 of 0.28. The R2 for both the ANN models
performed well when compared to the baseline of 0.28, with both models having an R2

of 0.25. Interestingly, the R2 of the LinearSVR model is far lower than any of the other
models (0.03) and does not match the pattern of ratios between the R2 and recall rates as
shown in Figure 3.7(a). This result does not repeat when predicting the CanHght.158
and CanHght.176 traits.

The mean model performance increases by a factor of 2.3 for R2 when predicting the
CanHght.158 compared to the CanHght.119, before decreasing by 0.06 when predicting
the CanHght.176. This drop is mirrored by the R2 performance of the baseline Ridge
Regression, which falls from 0.49 to 0.44. Despite the changes in R2, there is little
difference in the recall rate of the models between the three traits. This suggests that the

21 of 65

Chapter 3 Results and Discussion

Figure 3.6: The R2 and recall values calculated for each model when predicting the Base-
Diameter trait. Horizontal lines show the baseline R2 and recall set by the Ridge Regres-
sion model.

canopy height of the plants, and therefore their rate of growth, can be consistently
estimated by machine learning models. It also shows that there is a consistent
correlation between the genetic composition and the growth rate of Miscanthus sinensis.

Metric CanHght.119 CanHght.158 CanHght.176
RR R2 0.28 0.49 0.44
RR Recall 0.30 0.23 0.22
Mean R2 0.20 0.46 0.40
Mean Recall 0.24 0.24 0.19

Table 3.5: The mean R2 and recall values for the Canopy Height traits compared to the
baseline values.

3.1.4 Day of the year that Flowering Stage One was observed (DOYFS1)

A greater variation in model performance is seen when predicting the Day of the year
that Flowering Stage One was observed than has been seen in previous phenotypes,
with a variation of 0.41 between the highest R2 (Ridge Regression, 0.59) and lowest R2

(CVNN, 0.18). There is also a variation of 0.25 between the highest recall rate (SVR &
NuSVR, 0.52) and the lowest recall rate (CVNN, 0.27). As shown in Figure 3.6, the
models also follow no clear pattern regarding the ratio between the R2 and the recall
rate of each model, a pattern very strongly shown in Figure 3.7(b). Inspecting the
confusion matrices shown in Figure D.6, most of the values for this trait are accurately
predicted as 0.0. This is the value inserted in for the models in the case of a missing

22 of 65

Chapter 3 Results and Discussion

(a) CanHght.119 (b) CanHght.158 (c) CanHght.176

Figure 3.7: The R2 and recall values calculated for each model when predicting the Can-
Hght.119 (a), CanHght.158 (b), and CanHght.176 (c) traits. Horizontal lines show the
baseline R2 and recall set by the Ridge Regression model.

value and does not appear naturally in the phenotype dataset. With this accounted for,
there is not a strong correlation between the genetic composition and the time it takes
Miscanthus sinensis to flower, although with so many missing values in the original
dataset it is hard to say this with any certainty.

Metric Value
RR R2 0.59
RR Recall 0.48
Mean R2 0.46
Mean Recall 0.36

Table 3.6: The mean R2 and recall values for the DOYFS1 trait compared to the baseline
values.

3.1.5 Dry Matter (DryMatter)

Models struggled to predict the DryMatter trait with a low average R2 of 0.15 and a low
recall rate of 0.13, as shown by Table 3.7. The mean R2 was not significantly different
from the baseline, and neither was there a significant difference between the baseline
recall rate and the mean recall rate.

With such a consistently low predictive ability, the DryMatter trait, which is the weight
of the yield of the plant in grams of the sample at harvest, can be said to have no
correlation with the genetic composition of the plant itself.

Metric Value
RR R2 0.23
RR Recall 0.18
Mean R2 0.15
Mean Recall 0.13

Table 3.7: The mean R2 and recall values for the DryMatter trait compared to the baseline
values.

23 of 65

Chapter 3 Results and Discussion

Figure 3.8: The R2 and recall values calculated for each model when predicting the
DOYFS1 trait. Horizontal lines show the baseline R2 and recall set by the Ridge Re-
gression model.

Figure 3.9: The R2 and recall values calculated for each model when predicting the Dry-
Matter trait. Horizontal lines show the baseline R2 and recall set by the Ridge Regression
model.

24 of 65

Chapter 3 Results and Discussion

3.1.6 Day of the year that Emergence Stage Four was observed (es.4.doy)

The es.4.doy trait was one of the highest performance traits when scored by recall rate,
with every model achieving its highest recall rate for predicting this trait. The es.4.doy
measures the day of the year that leaf emergence, or emergence stage four, was
recorded. The range of values for this trait is from 77 to 133, giving only 56 possible
values. This small value range increases the likelihood that a model will predict the true
value, or a value much closer to true compared to a trait such as TransectCount, one of
the worst performing traits. This is contrasted by the low R2, which peaked with an R2

of 0.17 produced by the Decision Tree model, though most models produced a value
marginally above 0, which was also the baseline set by the Ridge Regression model.
There was no significant difference between the baseline and the mean R2 of the models,
nor was there a significant difference in the recall rates.

Metric Value
RR R2 0.00
RR Recall 0.64
Mean R2 0.03
Mean Recall 0.65

Table 3.8: The mean R2 and recall values for the es.4.doy trait compared to the baseline
values.

Figure 3.10: The R2 and recall values calculated for each model when predicting the
es.4.doy trait. Horizontal lines show the baseline R2 and recall set by the Ridge Regres-
sion model.

25 of 65

Chapter 3 Results and Discussion

3.1.7 Maximum Observed Canopy Height (MaxCanopyHeight)

As with the Canopy Heights discussed in Section 3.1.3, the models performed somewhat
well when predicting the height of the canopy at the time of the sample’s harvest. Most
models scored similarly to the baseline. The Decision Tree model performed worst, with
a significant decrease in ability compared to the baseline R2 and recall rates. The only
model to outperform the R2 set by the baseline was the FFNN model, with an R2 of 0.47.
The FFNN model was only the third best model when ranked by recall rate scoring 0.24,
compared to the baseline of 0.26 this is not significantly different.

Metric Value
RR R2 0.46
RR Recall 0.26
Mean R2 0.34
Mean Recall 0.23

Table 3.9: The mean R2 and recall values for the MaxCanopyHeight trait compared to the
baseline values.

Figure 3.11: The R2 and recall values calculated for each model when predicting the
MaxCanopyHeight trait. Horizontal lines show the baseline R2 and recall set by the
Ridge Regression model.

3.1.8 Moisture (Moisture)

Models also performed well on the Moisture trait with an average R2 of 0.65, not
significantly different from the baseline R2 of 0.68 as shown in Table 3.10. This suggests
the line of regression closely matches the true position of the data, and as a result there

26 of 65

Chapter 3 Results and Discussion

is strong correlation between the genomic profile of the samples and the Moisture trait.
Figure 3.12 shows that only the Decision Tree and CVNN models underperformed
compared to the baseline, as they have with many other traits.

Although the recall rate for the trait is only 0.31 on average, the confusion matrices
[Figure D.10] show a stronger predictive ability than the recall rate alone would suggest.
Combined with the high baseline and mean R2 the moisture trait suggests some of the
strongest correlation between the genome composition and phenotype. It should be
noted that, unlike the es.4.doy, the Moisture trait possessed a recorded range of 0 to
52.5, which gives a possible 525 possible values (when only calculating with to the first
decimal place), much more than the 56 possible values of the es.4.doy trait. Despite this
difference in range the models still scored well in recall, which was higher than any
individual model’s mean recall rate and equal to the mean recall rate of the baseline RR
model [Table 3.2].

Metric Value
RR R2 0.68
RR Recall 0.38
Mean R2 0.65
Mean Recall 0.31

Table 3.10: The mean R2 and recall values for the Moisture trait compared to the baseline
values.

Figure 3.12: The R2 and recall values calculated for each model when predicting the
Moisture trait. Horizontal lines show the baseline R2 and recall set by the Ridge Regres-
sion model.

27 of 65

Chapter 3 Results and Discussion

3.1.9 Stem Diameter (StemDiameter)

As shown in Table 3.11 the models performed similarly to the baseline, though
insignificantly worse. The recall rates for the trait are similar to those of the Moisture
trait, though the confusion matrices shown in Figure D.11 show that the models had a
much wider range of negative predictions, unlike what is seen with the Moisture trait.
This is reflected by the poor R2 performance of all of the models, with this trait being
only two of the thirteen to have a negative R2 baseline. As shown in Figure 3.13, the
CVNN model is the best performing model overall, as it is the only model with a
positive R2 (0.01) and a recall rate (0.30) above the baseline. The FFNN model also
produced a recall rate (0.30) above the baseline, however the model’s R2 (-0.12) was
below both the baseline and the mean R2 for the trait. It is interesting that the CVNN
model performed well compared to the others on this trait, as the only other trait it was
the best predictor of was CanHght.119, a trait which saw a much more uniform ability
between the models in their predict ability.

Metric Value
RR R2 -0.02
RR Recall 0.27
Mean R2 -0.10
Mean Recall 0.25

Table 3.11: The mean R2 and recall values for the StemDiameter trait compared to the
baseline values.

Figure 3.13: The R2 and recall values calculated for each model when predicting the
StemDiameter trait. Horizontal lines show the baseline R2 and recall set by the Ridge
Regression model.

28 of 65

Chapter 3 Results and Discussion

3.1.10 Tallest Stem (TallestStem)

The TallestStem trait was the second highest performing trait by average R2 (0.56),
behind Moisture (0.65). Though models scored similar recall rates on this trait compared
to most other traits, the high R2, combined with the confusion matrices shown in
Figure D.12 shows that the models are good at predicting this trait to a reasonable
degree of accuracy. This suggests that there is some correlation between the genome
composition and the measured phenotype trait. Though no model produced an R2

above the baseline value, the LassoLarsIC, SVR, NuSVR, and LinearSVR models all had
higher recall rates than the baseline, as shown in Table 3.12.

Metric Value
RR R2 0.67
RR Recall 0.31
Mean R2 0.56
Mean Recall 0.28

Table 3.12: The mean R2 and recall values for the TallestStem trait compared to the base-
line values.

Figure 3.14: The R2 and recall values calculated for each model when predicting the
TallestStem trait. Horizontal lines show the baseline R2 and recall set by the Ridge Re-
gression model.

3.1.11 Transect Count (TransectCount)

The TransectCount is the worst performing trait by both R2 and recall rate, one of only
two traits with a negative baseline R2. Models also produced consistently low R2

29 of 65

Chapter 3 Results and Discussion

values, with an average of -0.34 it was the lowest mean R2 of any model and
significantly lower than the mean and baseline R2 of the StemDiameter trait. Both the
baseline and mean recall rates are about half those of the StemDiameter trait.
Figure D.13 shows how all of the models tended towards predicting a narrow range of
values for the trait compared to the total possible range of values, a tendency seen in
some of the other traits with poor predictions, such as the DryMatter trait.

Metric Value
RR R2 -0.28
RR Recall 0.13
Mean R2 -0.34
Mean Recall 0.12

Table 3.13: The mean R2 and recall values for the TransectCount trait compared to the
baseline values.

Figure 3.15: The R2 and recall values calculated for each model when predicting the
TransectCount trait. Horizontal lines show the baseline R2 and recall set by the Ridge
Regression model.

30 of 65

Chapter 3 Results and Discussion

3.2 Discussion

When evaluating the models there are two aspects for considerations: how the models
performed on each phenotype, and how each model performed independently across all
phenotypes.

As Figure 3.2 shows, each model follows a similar pattern as regards to its predictive
ability for each Phenotype trait. Every model has its highest recall rate when predicting
the es.4.doy trait. As mentioned above the es.4.doy trait has a range of only 56 possible
values which may have increased the predictive ability of the models by decreasing the
variation in predictions. This may not be the case however, as the TransectCount trait,
which contained 76 possible values, was the phenotype trait that models scored the
lowest recall rates in. The TransectCount trait was determined by inserting a stick
through the base of the plant and counting the number of stems that reached 50% of the
canopy height which are also touching the stick. That this phenotype and the es.4.doy
phenotype have such similar value ranges but such significantly different recall rates
(FMax = 12.34), suggests that the TransectCount trait has little to do with the plants
genetic construction, and far more to do with the environmental factors the plant faced
in during its time growing. This would suggest that there is a strong correlation
between the genomic composition of the plant and the rate at which it reaches
emergence stage four, and that there is little to no correlation between the genomic
composition and the number of stems that a plant will produce at its base.

If the SNPs that contribute to the rate of maturity can be identified, then this trait can be
spread through a population through genetic modification processes. This would create
the ability to decrease the growing times of plants, and with some consideration to other
phenotype traits, not impact the yield provided by the faster maturing plants.

With the limited range of possible predictions for es.4.doy in mind, the high recall rate
suggests that Machine Learnings would be useful for predicting the stages of emergence
for the plant, which may be a desirable trait to select for breeding as it would help to
create a uniformity amongst a crop of Miscanthus sinensis. This uniformity would
simplify the harvesting process for the crop as it allows growers to breed a crop of
Miscanthus that flower at a more predictable point in the growing cycle. Environmental
factors such as the amount of sunlight and the temperature will still contribute to this,
though a combined genomic and environmental model would account for the variation
introduced by environmental factors.

In the case of biofuel production, the Dry Matter content of a plant, combined with the
Moisture content of a plant would give an indication of the oil content of the plant.
These triacylglycerol oils produced by plants are an important part in the production of
biofuels as they are one of the most abundant forms of concentrated carbon available in
plant matter [62]. If we are able to understand the connection between the composition
of a plants genome and the potential oil content, then the ability to selectively breed
plants with a lower moisture content, and a higher oil content would be increased. From
a post-harvest point of view, knowing the weight of a plant and the genetic composition
would allow biofuel producers to discard plants that may not produce enough biofuel
mass given their harvested content. If a crop is harvested that has a genome prone to
creating plants with low oil production and high water retention, then these crops may

31 of 65

Chapter 3 Results and Discussion

be discarded before the biofuel production begins. This would save energy and
production time as the need to extract and filter out the water content of the plant
would no longer be needed. This would also decrease the emissions produced through
the creation of biofuels as less processing is required, and therefore less energy needed.
Further study should be conducted regarding this, preferably with the oil content of the
plant included as a measured phenotype.

The Maximum Observed Canopy Height trait would be a desirable trait for selective
breeding as the taller the crop the more susceptible it may be to strong winds and
storms which would damage a crop and decrease the yield. By being able to predict the
height of a crop from the genetic composition growers could selectively breed crops of
Miscanthus sinensis to suit their growing climate. The Maximum Observed Canopy
Height could also be combined with other phenotype traits such as the DryMatter to
breed plants that spend less of their time producing large amounts of flowers and seeds
and more growing longer and sturdier stems. This would be beneficial in the conversion
of the crops to biofuels as more useable plant would be produced. If breeding models
were also used to predict the canopy heights at different stages, plants with a genome
that produces fast growing stems could be favoured in the breeding process to create a
strain of Miscanthus sinensis which grows taller, faster, therefore creating more
resources that could be turned into biofuel in a shorter span of time, which again
increases the quantity of creatable biofuel.

Though combined the models performed generally well, with a mean R2 of 0.26 and a
mean recall rate of 0.28 when predicting quantitative values split into an average of nine
bins, no individual model was the best performing outright. The NuSVR model
performed the best on the most models (four of thirteen), however the Ridge Regression
model also performed best on the same number of traits as the NuSVR model. The other
SVM learners, SVR and LinearSVR, performed well on three traits together. Combined
with the results of the NuSVR model, the SVM models were the most successful style of
Machine Learning. The performance of the Ridge Regression model should not be
discounted though. As the baseline model the Ridge Regression consistently
outperformed other more complex models, whether or not the trait in question was
correlated to the genome or not.

The models examined in this paper can be compared to prior research [63,64]. Models in
this paper performed performed similarly to the ordinary least squared regression
model examined by Arruda et al, which found marker-assisted models had a
performance ability of < 0.3 while the models in this paper had a mean recall rate of
0.28. It should be noted, however, that the actual evaluation metrics employed by
Arruda et al. are not entirely comparable to those used in this paper. Albrecht et al.,
however, found that models with a similar input sample size to that used in this paper
performed somewhat better than models in this paper (0.43 - 0.53).

The CVNN model which was inspired by [54], and the RBFN which was inspired
by [56], were not fully replicated in this paper for a variety of reasons discussed in
Section 4.4. Further research with improved resources should be conducted to evaluate
these models more accurately, as the previous research indicates these methods should
perform better than has been demonstrated here. An expanded dataset, with a larger
number of genotypes, should also be conducted. Increasing the range of inputs would

32 of 65

Chapter 3 Results and Discussion

not only provide more learning material for the models, but it may also mirror industrial
applications of these models more closely. This is important if ML models are to be used
in the industrial genomic selection of plants for hybrid breeding for improved biofuel
production. A dataset of phenotypes which includes more complex phenotypes, such as
a measure of triacylglycerol oils in the plant would also be useful in showing the ability
of ML models to predict complex phenotypes from Miscanthus sinensis genotypes.

33 of 65

Chapter 3 Results and Discussion

3.3 Conclusion

Machine Learning models, in particular Support Vector Regression like the NuSVR
model and linear models such as Ridge Regression or Best Linear Unbiased Predictor,
are capable of somewhat accurately predicting quantitative phenotype traits from the
genomic composition of the Miscanthus sinensis grass. The models were able to show
some correlation between the plant genome and the resulting phenotypes, the
TallestStem, Moisture, AvgeSen, and DOYFS1 were the best predicted traits and can
therefore be said to be most strongly correlated to the Miscanthus sinensis genome. The
performance of the models could be improved if the environmental factors are taken
into consideration alongside an expanded set of genomic information, though further
research should be conducted to see if this hypothesis holds.

34 of 65

Chapter 4 Evaluation and Reflection

Chapter 4

Evaluation and Reflection

During the course of this project I was met with a variety of challenges and obstacles to
overcome. These ranged from minor confusions to major roadblocks. I was, however,
able to overcome them at each step through considered planning and a strong work
ethic. This chapter will discuss these problems and how I overcame them in more detail.
It will also evaluate the methods and techniques used throughout the project and
discuss if and how they could have been improved or altered.

4.1 Data Acquisition

At the beginning of the project, during the initial research phase, I had planned to use a
dataset derived from one or several research papers. I had chosen this approach as I
thought using existing, published, material would also allow me to compare the ability
of my Machine Learning methods to those from the original papers because they were
being trained on the same set of data. This proved to be harder than I had expected as
many of the papers I came across initially made little to no mention of the content of
their data. If the data was discussed in any detail, only the fact that it was simulated
data was discussed, or the online site hosting the data had been shutdown or simply no
longer existed on the internet, these latter situations were disappointingly but not
surprisingly common. I had decided it was not in the scope of this research to simulate
the data because I did not think it would allow for an accurate assessment of the
correlation between the plant genome and the phenotypes. After discussing this with
my supervisor, Prof. Reyer Zwiggelaar, I was connected with a research group at the
Prifysgol Aberystwyth who provided me with access to their Miscanthus sinensis
datasets. At first, I was provided with an archive that contained a large mix of
Comma-separated Value datasets, R source files, proprietary Microsoft Excel files, and
text files. It took me some time to sort through the files and begin to understand what I
had been handed. After further discussion via email with the group I was sent another
archive with more CSV files and more R source files, again with no explanation of the
content of the archive. Reading back through the email chain I had been linked into, and
which contained the prior correspondence, I learned the group met fortnightly over the
Microsoft Teams teleconferencing software. After asking to attend a meeting I was

35 of 65

Chapter 4 Evaluation and Reflection

invited to their next meeting which would be on 28th March, 2024. At the meeting I was
able to clarify some confusion (again) as to the fact I was completing and undergraduate
project, and not a PhD. I was also able to learn some more about the datasets that I had,
although most of this knowledge came not from the meeting itself but from a GitHub
page that I was given access to. This contained the data that I already had but in a sorted
and explained manner that meant I could actually begin on implementing models to
make use of the appropriate data. Over the following weeks I had some additional
questions that were helpfully answered by James Strong (Prifysgol Aberystwyth) and a
Stephen Gow (University of Southampton).

The challenge of acquiring data took far longer than I had originally estimated it would
take. This delayed the project immensely as without any data I could not begin
developing any ML models, and without these I could not reasonably begin
documenting much of the methodology described in Chapter 2. I could also not begin
writing any of Chapter 3. This would not have been so much of an issue if I had been
able to compile the data sooner, but by the time the task was completed it was mid April
and the original time frame for the project as a whole was drawing close. This reduction
in time lead to some of the design aspects described in the paper. The models all follow
a very similar internal design, with minor variations to account for the style of each
model where necessary. This was done to simplify the design process and to reduce the
time spent developing each model. This allowed for more time to be spent running the
models and tuning the models’ parameters. It also increased the amount of time
available for the production of this paper.

If I were to reproduce this research, or conduct further research with this paper as a
foundation, there are several approaches I would take to improve my access to data.
Primarily, I would begin by looking only for open-source datasets. After I had began to
use the Miscanthus sinensis dataset seen in this paper I came across other research, such
as [48], which made use of publicly available datasets from organisations such as the
Rice Diversity Panel [65]. This would not only have shortened the process of data
acquisition, but it would have also allowed me to compare the results of this research to
other papers that have also made use of one of the Rice Diversity Panel’s data. If I had
instead continued to use the Miscanthus sinensis dataset, I would have been, and in the
future I will be, able to ask more informed questions to the suppliers of the data. These
questions would have, I expect, returned more useful answers than the ones I actually
received, which would have furthered my understanding of the dataset much faster.
With my current understanding of the field and the data itself, I would have been more
confident in my approach to contacting the suppliers. As a result of this confidence I
would have, and will be in the future, more proactive in trying to organise face-to-face
meetings to ask questions and have the data described to me. This too would have
furthered my understanding of the data faster than the limited online meeting I was
able to attend during the project.

4.2 Software Development

The problem of data acquisition did, however, show the resiliency of the software
development methods, discussed in Chapter2, that I had established at the start of the

36 of 65

Chapter 4 Evaluation and Reflection

project. I was able to easily keep on top of work because of the KanBan boards. The hard
limit of five cases for the ‘Planning’ and ‘In Progress’ categories, combined with the Jira
timeline view [Figure 2.6], meant I was able to prioritise the epics and cases that were
more urgent. This was further aided by the integration between Jira and BitBucket, as I
was able to easily manage the different branches I was working in. It also made the
process of merging branches together simpler because of the Pull Request process in
BitBucket. This allowed me to manually review each changed file in a branch compared
to the file as it was in the destination branch. If there was something that needed
changing, such as additional empty lines or blocks of commented out test code that I
had not removed, I could add a review comment to that line in BitBucket. This comment
would need to be marked as ‘Resolved’ before I could approve and then merge the
branch into the destination branch. After I had reviewed each file I would return back to
the development branch on my machine, make the necessary changes, commit and push
the changes to the branch and then re-review the branch in BitBucket. If there were no
other changes that needed to be made, then the pull request would be approved and
then merged into the destination branch by BitBucket. If in the case of a merge conflict
BitBucket would identify these before allowing the branches to be merged. These
conflicts would still need to be updated in the local branch and the changes pushed to
the origin branch. I found this process to be far less error-prone compared to managing
the version control process without the assistance of BitBucket, as well as it being
simpler and easier with BitBucket and Jira.

By reducing the version control workload with BitBucket and Jira, I was able to devote
more time to expanding my technical abilities. I have previously created short and
simple bash scripts for use on personal projects but also in professional scenarios such
as during my industrial placement year. These bash scripts were only normally used to
automate tedious CLI processes and would only contain a few commands to be run
sequentially by the script. To expand the scope of the technical work for this project, I
chose to create an executable bash script that could be used within the development
environment to run a desired module with the correct CLI parameters. This required me
to learn a lot about the bash scripting language that I had not previously needed to
interact with. A good example of this was the implementation of argument flags to the
program. I previously understood how bash handled variables both from the CLI and
between different scripts at a surface level. However, to implement the flags seen in
Listing B.4, I had to teach myself about the ‘getopts’ command and the accompanying
‘OPTARGS’ variable. I did this by using some examples provided on
StackExchange [66, 67], as well as through a few linux-centric blogs such as [68]. By
reading these pages, and others, I was able to better understand not only how CLI flags
work, but also how to create better, more complex and capable, bash scripts. The
PRODELS script that resulted from this work greatly simplified the process of running
the models as I no longer needed to enter the CLI arguments in the same order every
time I needed to run a model. Instead the User is now able to use the CLI flags to
organise their arguments, which can be entered into the CLI in any order. The bash
script will then run the given Python file with the arguments in the correct order every
time. I also investigated if there was a proper formatting for the help messages that
most CLI programs provide. Although I could find no definitive guide I was able to put
together a help dialogue by looking at the format of programs I have installed on my
personal machine as well as from some answers online [69].

37 of 65

Chapter 4 Evaluation and Reflection

4.3 The Python and R Languages

Due to the overlap between the fields of computer science and the bioinformatics field, a
lot of code is written in the R language [28]. Before this project I had some surface level
experience with R, mainly to create graphs for other papers, however I needed to have a
much deeper understanding of R in order to complete this project. R shares some
similarities with other languages I am familiar with like Python and Haskell [70, 71],
though it also contains syntax that I have not had to interact with or understand before.
As mentioned above, many of the files I was sent as part of the original Miscanthus
datasets were written in R, this challenged me as I did not fully understand the
processes that were being executed within the file. In order to expand my
understanding I began by reading through the comments left in the various R files that I
thought might be useful to me. I combined the information in the comments with my
general understanding of programming and software development to infer the function
of each individual line in the files, piecing together my understanding of the code along
the way. I found this approach worked well for me, even if at times it may have been too
slow it was not so important as I was not planning on doing any major development in
R at the start of the project. While planning and evaluating my approaches to certain
other problems during the development process I did consider using R to solve the
problem at hand, though each time I deemed Python to be an easier and faster approach
because I have much more experience in the language, which was important given the
concerns regarding the shortening time frame mentioned above. I did use R, along with
the ggplot2 package [72] to produce the graphs shown throughout the paper.

The most obvious disadvantage to disregarding the R language as a possible platform is
that it also prevented me from using many packages for predictive ML models that are
commonly utilised in bioinformatics. These packages include the rrBLUP [73]library
whioch implements linear ridge regression models for genomic predictions. These
packages would have saved some development time, and would have allowed me to
examine the performance of commonly employed models, rather than analogous
models that I did implement. However, the time saved by using these R packages
would have not made up for the time that would have been needed for me to familiarise
myself with R well enough to accomplish the task. I also ran into several problems
installing R into the container that was used for development and testing. Pursuing this
course would have exhausted yet more time installing R into the container along with
all of the R packages, which cannot be installed as simply into a system as third party
python libraries can.

In order to implement the models into Python, I chose to use several libraries I had no
previous first hand experience with, namely Pandas, Scikit Learn, PyMC3, and
Keras3 [19–21, 60, 70]. As discussed in Chapter 2, I created an example Python file to
teach myself the basic syntax of Scikit Learn, to reference during further development,
and to add experimental features to before placing them into the model being
developed. I followed the same process when learning how to use PyMC3 and Keras3,
as I found it was a simple and effective method for learning the basic logic of these
libraries. For Pandas, however, I used the CLI Python environment, invoked with the
python3 command. By doing this inside of the container I was able to rerun the same
commands several times over in order to understand the resulting outputs. I also found

38 of 65

Chapter 4 Evaluation and Reflection

it very useful as after each modification to the Pandas DataFrame I was able to print the
DataFrame to the CLI and inspect it more easily than if I was to develop an entire
program first and print out the result of each command at each step and then scroll back
through the output history in the CLI.

4.4 Model Improvements

These packages allowed me to produce nine models in total, eight of which I was able to
run. I was also able to produce several experimental models and scripts that I did not
discuss in this paper. The Convolution Neural Network model, which was consistently
one of the worst performing models, could have been improved and fleshed out far
more than it is at the end of this project. Inspired by the Locally Connected Neural
Network (LCNN) developed in [54], I was not able to completely recreate the model for
a few reasons, not only because because the LocallyConnected1D layer that is the
focus of the model was depreciated between Keras2 and Keras3. The Python code for
the original LCNN was made available by the paper, though it was hard to find as the
names used for supplementary files in the paper did not match the name of the
supplementary files available online. I could not, however, find the dataset used by the
paper for training the LCNN. Despite having cloned and updated the appropriate files
from the Keras2 to make the LocallyConnected1D layer functional in Keras3 again,
not being able to access the original data made it harder to implement a one-to-one
recreation of the model in Keras3 because I could not fully understand the structure of
the LCNN model without knowing the inputs. This was compounded by the somewhat
unnecessarily complex structure of the paper’s code, which made it harder for me to
parse as an interested reader.

The RBF model that was mentioned briefly in Chapter 2 was another model directly
inspired by a paper, only in this case the model fell short for other reasons. After forking
the original RBF layer [58] and updating it to work with the new Keras3 backend [59],
the layer requires an input shape equal to the shape of the input data. This causes a
problem as the input shape of the SNP dataset is 13,630 by 110. When the model was
run, Linux would kill the process after around ten seconds to prevent the process from
using all of operating system’s, and therefore the container’s, memory. I attempted to
solve this problem in a number of ways. Firstly, I tried increasing the memory allotted to
the container from 4GB to 6GB, this did not work. I also tried running the program on
my desktop machine. This machine runs Linux and has 46GB of memory, after adjusting
the memory allocation for the container on this machine I was still unable to run the
model without it being killed by Linux. While running it on the desktop machine I also
tried splitting the data into equal subsets and training the model on each subset
separately before combining the predictions at the end to get average scores for each
subset model. This also did not work so the model was abandoned, finished but
un-executable, and the Jira case moved to the ‘On Hold’ category.

39 of 65

Chapter 4 Evaluation and Reflection

4.5 Reflection

Working on this project has taught me a lot about research oriented software
development, a field I am certainly more interested in now than I was six months ago. It
has given me space to read papers and investigate topics that I would not necessarily
have thought to delve into independently, and in doing so has helped me to expand my
understanding of the field of computational bioinformatics as well as strengthen my
understanding of Machine Learning as an applied practice. I also more fully understand
the benefits of certain agile methodologies, having been able to apply and adapt them to
my own work as opposed to being funnelled through the agile processes as I sometimes
experienced during my industrial year. With this experience to hand, I certainly intend
to make use of more agile processes in future work for my own personal projects, and if
the situation arises, I will suggested appropriate agile processes to team leaders in
industry.

40 of 65

References

[1] J. Huang, J. Yang, S. Msangi, S. Rozelle, and A. Weersink, “Biofuels and the poor:
Global impact pathways of biofuels on agricultural markets,” Food policy, vol. 37,
no. 4, pp. 439–451, 2012.

[2] W. E. Tyner, “The us ethanol and biofuels boom: its origins, current status, and
future prospects,” BioScience, vol. 58, no. 7, pp. 646–653, 2008.

[3] J. R. Stewart, Y. Toma, F. G. Fernandez, A. Nishiwaki, T. Yamada, and G. Bollero,
“The ecology and agronomy of miscanthus sinensis, a species important to
bioenergy crop development, in its native range in japan: a review,” Gcb Bioenergy,
vol. 1, no. 2, pp. 126–153, 2009.

[4] M. F. Danilevicz, M. Gill, R. Anderson, J. Batley, M. Bennamoun, P. E. Bayer, and
D. Edwards, “Plant genotype to phenotype prediction using machine learning,”
Frontiers in Genetics, vol. 13, p. 822173, 2022.

[5] T. Guo and X. Li, “Machine learning for predicting phenotype from genotype and
environment,” Current Opinion in Biotechnology, vol. 79, p. 102853, 2023.

[6] Y. Cui, R. Li, G. Li, F. Zhang, T. Zhu, Q. Zhang, J. Ali, Z. Li, and S. Xu, “Hybrid
breeding of rice via genomic selection,” Plant biotechnology journal, vol. 18, no. 1, pp.
57–67, 2020.

[7] R. K. Varshney, A. Graner, and M. E. Sorrells, “Genomics-assisted breeding for crop
improvement,” Trends in plant science, vol. 10, no. 12, pp. 621–630, 2005.

[8] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning.
MIT press, 2018.

[9] F.-W. Li and A. Harkess, “A guide to sequence your favorite plant genomes,”
Applications in Plant Sciences, vol. 6, no. 3, p. e1030, 2018.

[10] T. H. Meuwissen, B. J. Hayes, and M. Goddard, “Prediction of total genetic value
using genome-wide dense marker maps,” genetics, vol. 157, no. 4, pp. 1819–1829,
2001.

[11] J. Wang, Z. Zhou, Z. Zhang, H. Li, D. Liu, Q. Zhang, P. J. Bradbury, E. S. Buckler,
and Z. Zhang, “Expanding the blup alphabet for genomic prediction adaptable to
the genetic architectures of complex traits,” Heredity, vol. 121, no. 6, pp. 648–662,
2018. [Online]. Available: https://doi.org/10.1038/s41437-018-0075-0

41 of 65

https://doi.org/10.1038/s41437-018-0075-0

Chapter 4 REFERENCES

[12] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for agile software
development,” 2001. [Online]. Available: https://agilemanifesto.org/

[13] Atlassian. (2024) Bitbucket. [Online]. Available:
https://www.atlassian.com/software/bitbucket

[14] Git. (2024) Gitk. [Online]. Available: https://git-scm.com/docs/gitk

[15] Atlassian. (2024) Jira. [Online]. Available:
https://www.atlassian.com/software/jira

[16] G. Slavov, P. Robson, E. Jensen, E. Hodgson, K. Farrar, G. Allison, S. Hawkins,
S. Thomas-Jones, X.-F. Ma, L. Huang, et al., “Contrasting geographic patterns of
genetic variation for molecular markers vs. phenotypic traits in the energy grass
miscanthus sinensis,” GCB Bioenergy, vol. 5, no. 5, pp. 562–571, 2013.

[17] G. T. Slavov, R. Nipper, P. Robson, K. Farrar, G. G. Allison, M. Bosch, J. C.
Clifton-Brown, I. S. Donnison, and E. Jensen, “Genome-wide association studies
and prediction of 17 traits related to phenology, biomass and cell wall composition
in the energy grass miscanthus sinensis,” New phytologist, vol. 201, no. 4, pp.
1227–1239, 2014.

[18] D. Merkel, “Docker: lightweight linux containers for consistent development and
deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[20] F. Chollet et al., “Keras,” https://keras.io, 2015.

[21] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020. [Online].
Available: https://doi.org/10.5281/zenodo.3509134

[22] Wes McKinney, “Data Structures for Statistical Computing in Python,” in
Proceedings of the 9th Python in Science Conference, Stéfan van der Walt and Jarrod
Millman, Eds., 2010, pp. 56 – 61.

[23] Docker. Docker desktop: The #1 containerization software for developers and
teams. [Online]. Available: https://www.docker.com/products/docker-desktop/

[24] R. Mefi. (2019) Unit testing writing dockerfiles like a software developer. [Online].
Available: https://medium.com/@renatomefi/
unit-testing-writing-dockerfiles-like-a-software-developer-1759f416ce84

[25] G. Vitta. (2020) Docker unit test: how to test a dockerfile (guide 2020). [Online].
Available:
https://www.gasparevitta.com/posts/docker-unit-test-dockerfile-image/

42 of 65

https://agilemanifesto.org/
https://www.atlassian.com/software/bitbucket
https://git-scm.com/docs/gitk
https://www.atlassian.com/software/jira
https://keras.io
https://doi.org/10.5281/zenodo.3509134
https://www.docker.com/products/docker-desktop/
https://medium.com/@renatomefi/unit-testing-writing-dockerfiles-like-a-software-developer-1759f416ce84
https://medium.com/@renatomefi/unit-testing-writing-dockerfiles-like-a-software-developer-1759f416ce84
https://www.gasparevitta.com/posts/docker-unit-test-dockerfile-image/

Chapter 4 REFERENCES

[26] G. Dubinka, bodax, and rultor, “docker-unittests,”
https://github.com/dgroup/docker-unittests, 2019.

[27] Acsbidoul, Dstufft, Pf moore, Pradyunsg, Uranusj, and Xafer. (2024) pip 24.0.
[Online]. Available: https://pip.pypa.io/en/stable/

[28] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation
for Statistical Computing, Vienna, Austria, 2023. [Online]. Available:
https://www.R-project.org/

[29] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher, and F. Bruhin,
“pytest 8.2.2,” 2004. [Online]. Available: https://github.com/pytest-dev/pytest

[30] Pandas Contributor Community, “DataFrame,” Intro to data structures, 2024.
[Online]. Available:
https://pandas.pydata.org/docs/user guide/dsintro.html#basics-dataframe

[31] A. Amor, L. Liu, and Y. Xiao. (2024) Gridsearchcv - scikit-learn 1.5.1. [Online].
Available: https://scikit-learn.org/stable/modules/generated/sklearn.
model selection.GridSearchCV.html

[32] ——, “R score, the coefficient of determination,” Model Selection and Evaluation,
2024. [Online]. Available:
https://scikit-learn.org/stable/modules/model evaluation.html#r2-score

[33] ——. (2024) sklearn.metrics - scikit-learn 1.5.1. [Online]. Available:
https://scikit-learn.org/stable/api/sklearn.metrics.html

[34] ——. (2024) Ridge - scikit-learn 1.5.1. [Online]. Available: https:
//scikit-learn.org/stable/modules/generated/sklearn.linear model.Ridge.html

[35] G. Moser, B. Tier, R. E. Crump, M. S. Khatkar, and H. W. Raadsma, “A comparison
of five methods to predict genomic breeding values of dairy bulls from
genome-wide snp markers,” Genetics Selection Evolution, vol. 41, pp. 1–16, 2009.

[36] M. Pszczola, T. Strabel, A. Wolc, S. Mucha, and M. Szydlowski, “Comparison of
analyses of the qtlmas xiv common dataset. i: genomic selection,” in BMC
proceedings, vol. 5. Springer, 2011, pp. 1–5.

[37] T. Luan, J. A. Woolliams, S. Lien, M. Kent, M. Svendsen, and T. H. Meuwissen, “The
accuracy of genomic selection in norwegian red cattle assessed by
cross-validation,” Genetics, vol. 183, no. 3, pp. 1119–1126, 2009.

[38] P. Le Roy, O. Filangi, O. Demeure, and J.-M. Elsen, “Comparison of analyses of the
xv th qtlmas common dataset iii: Genomic estimations of breeding values,” in BMC
proceedings, vol. 6. Springer, 2012, pp. 1–6.

[39] N. Heslot, H.-P. Yang, M. E. Sorrells, and J.-L. Jannink, “Genomic selection in plant
breeding: a comparison of models,” Crop science, vol. 52, no. 1, pp. 146–160, 2012.

[40] R. Tibshirani, “Regression Shrinkage and Selection Via the Lasso,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 12 2018.
[Online]. Available: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

43 of 65

https://github.com/dgroup/docker-unittests
https://pip.pypa.io/en/stable/
https://www.R-project.org/
https://github.com/pytest-dev/pytest
https://pandas.pydata.org/docs/user_guide/dsintro.html#basics-dataframe
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score
https://scikit-learn.org/stable/api/sklearn.metrics.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Chapter 4 REFERENCES

[41] G. de los Campos, H. Naya, D. Gianola, J. Crossa, A. Legarra, E. Manfredi,
K. Weigel, and J. M. Cotes, “Predicting Quantitative Traits With Regression Models
for Dense Molecular Markers and Pedigree,” Genetics, vol. 182, no. 1, pp. 375–385,
05 2009. [Online]. Available: https://doi.org/10.1534/genetics.109.101501

[42] M. G. Usai, M. E. Goddard, and B. J. Hayes, “Lasso with cross-validation for
genomic selection,” Genetics Research, vol. 91, no. 6, p. 427436, 2009.

[43] K. A. Weigel, G. de los Campos, O. Gonzlez-Recio, H. Naya, X. L. Wu, N. Long,
G. J. M. Rosa, and D. Gianola, “Predictive ability of direct genomic values for
lifetime net merit of holstein sires using selected subsets of single nucleotide
polymorphism markers,” Journal of Dairy Science, vol. 92, pp. 5248–5257, 2009.

[44] H. Li, J. Wang, and Z. Bao, “A novel genomic selection method combining gblup
and lasso,” Genetica, vol. 143, no. 3, pp. 299–304, 2015. [Online]. Available:
https://doi.org/10.1007/s10709-015-9826-5

[45] A. Amor, L. Liu, and Y. Xiao, “Lasso,” Linear Models - scikit-learn 1.5.1
Documentation, 2024. [Online]. Available:
https://scikit-learn.org/stable/modules/linear model.html#lasso

[46] ——, “LassoLars,” Linear Models - scikit-learn 1.5.1 Documentation, 2024. [Online].
Available: https:
//scikit-learn.org/stable/modules/linear model.html#least-angle-regression

[47] ——, “LassoLarsIC,” Linear Models - scikit-learn 1.5.1 Documentation, 2024. [Online].
Available:
https://scikit-learn.org/stable/modules/linear model.html#lasso-lars-ic

[48] A. Aljouie and U. Roshan, “Prediction of continuous phenotypes in mouse, fly, and
rice genome wide association studies with support vector regression snps and
ridge regression classifier,” in 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA). IEEE, 2015, pp. 1246–1250.

[49] N. Long, D. Gianola, G. J. Rosa, and K. A. Weigel, “Application of support vector
regression to genome-assisted prediction of quantitative traits,” Theoretical and
applied genetics, vol. 123, pp. 1065–1074, 2011.

[50] C. Chang and C. Lin. (2024) Libsvm – a library for support vector machines.
[Online]. Available: https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

[51] L. Chih-Jen, X. Wang, K. Chang, C. Hsieh, R. Fan, G. Yuan, F. Huang, C. Ho, B. Chu,
M. Lee, W. Chiang, C. Hsia, Y. Zhu, H. Yu, H. Huang, J. Hsia, H. Chou, P. Lin,
C. Lee, L. Gallo, J. Yen, Y. Li, and G. Chen. (2024) Liblinear – a library for large
linear classification. Machine Learning Group at National Taiwan University.
[Online]. Available: https://www.csie.ntu.edu.tw/∼cjlin/liblinear/

[52] F. Chollet et al. (2024) Adam. [Online]. Available:
https://keras.io/api/optimizers/adam/

[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.
[Online]. Available: https://arxiv.org/abs/1412.6980

44 of 65

https://doi.org/10.1534/genetics.109.101501
https://doi.org/10.1007/s10709-015-9826-5
https://scikit-learn.org/stable/modules/linear_model.html#lasso
https://scikit-learn.org/stable/modules/linear_model.html#least-angle-regression
https://scikit-learn.org/stable/modules/linear_model.html#least-angle-regression
https://scikit-learn.org/stable/modules/linear_model.html#lasso-lars-ic
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://keras.io/api/optimizers/adam/
https://arxiv.org/abs/1412.6980

Chapter 4 REFERENCES

[54] T. Pook, J. Freudenthal, A. Korte, and H. Simianer, “Using local convolutional
neural networks for genomic prediction,” Frontiers in genetics, vol. 11, p. 561497,
2020.

[55] F. Chollet et al. (2024) Convolutional1d. [Online]. Available:
https://keras.io/api/layers/convolution layers/convolution1d/

[56] J. González-Camacho, G. de Los Campos, P. Pérez, D. Gianola, J. Cairns,
G. Mahuku, R. Babu, and J. Crossa, “Genome-enabled prediction of genetic values
using radial basis function neural networks,” Theoretical and Applied Genetics, vol.
125, pp. 759–771, 2012.

[57] G. Morota and D. Gianola, “Kernel-based whole-genome prediction of complex
traits: a review,” Frontiers in genetics, vol. 5, p. 363, 2014.

[58] P. Vidnerová. (2019) Rbf-keras: an rbf layer for keras library. [Online]. Available:
https://github.com/PetraVidnerova/rbf keras

[59] F. Andrade May. (2024) Rbf-keras: an rbf layer for keras library. [Online]. Available:
https://github.com/Aoianai/rbf keras

[60] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic programming in python
using pymc3,” PeerJ Computer Science, vol. 2, p. e55, 2016.

[61] G. Casella and E. I. George, “Explaining the gibbs sampler,” The American
Statistician, vol. 46, no. 3, pp. 167–174, 1992.

[62] T. P. Durrett, C. Benning, and J. Ohlrogge, “Plant triacylglycerols as feedstocks for
the production of biofuels,” The Plant Journal, vol. 54, no. 4, pp. 593–607, 2008.

[63] M. Arruda, A. Lipka, P. Brown, A. Krill, C. Thurber, G. Brown-Guedira, Y. Dong,
B. Foresman, and F. Kolb, “Comparing genomic selection and marker-assisted
selection for fusarium head blight resistance in wheat (triticum aestivum l.),”
Molecular Breeding, vol. 36, pp. 1–11, 2016.

[64] T. Albrecht, V. Wimmer, H.-J. Auinger, M. Erbe, C. Knaak, M. Ouzunova,
H. Simianer, and C.-C. Schön, “Genome-based prediction of testcross values in
maize,” Theoretical and Applied Genetics, vol. 123, pp. 339–350, 2011.

[65] R. D. Panel. (2018) Rice diversity panel website. [Online]. Available:
http://www.ricediversity.org/outreach/course/index.cfm

[66] gagneet, codeforester, V. Vagabond, vaeVictis, A. Requate, TomRoche, B. Karwin,
jones77, and et al. (2008) Using getopts to process long and short command line
options. [Online]. Available: https://stackoverflow.com/questions/402377/
using-getopts-to-process-long-and-short-command-line-options

[67] R. Samane, P. T, and D. Williamson. (2012) bash getopts with multiple and
mandatory options. [Online]. Available: https://stackoverflow.com/questions/
11279423/bash-getopts-with-multiple-and-mandatory-options

[68] Z. Islam Laku. (2024) How to Use getopts in Bash [Complete Guide]. [Online].
Available: https://linuxsimply.com/bash-scripting-tutorial/functions/
script-argument/bash-getopts/

45 of 65

https://keras.io/api/layers/convolution_layers/convolution1d/
https://github.com/PetraVidnerova/rbf_keras
https://github.com/Aoianai/rbf_keras
http://www.ricediversity.org/outreach/course/index.cfm
https://stackoverflow.com/questions/402377/using-getopts-to-process-long-and-short-command-line-options
https://stackoverflow.com/questions/402377/using-getopts-to-process-long-and-short-command-line-options
https://stackoverflow.com/questions/11279423/bash-getopts-with-multiple-and-mandatory-options
https://stackoverflow.com/questions/11279423/bash-getopts-with-multiple-and-mandatory-options
https://linuxsimply.com/bash-scripting-tutorial/functions/script-argument/bash-getopts/
https://linuxsimply.com/bash-scripting-tutorial/functions/script-argument/bash-getopts/

Chapter 4 REFERENCES

[69] Yifan, desernaut, davetron5000, hellow, L. Finley, S. Wing, MotherDawg, Alex,
pmr, J. Harley, A. Unkrig, C. J. John, and shelter. (2012) Is there a ”standard” format
for command line/shell help text? [Online]. Available: https://stackoverflow.com/
questions/9725675/is-there-a-standard-format-for-command-line-shell-help-text

[70] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009, 1441412697.

[71] S. Marlow et al., “Haskell 2010 language report,” 2010. [Online]. Available:
http://www.haskell.org/

[72] H. Wickham, ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York, 2016. [Online]. Available: https://ggplot2.tidyverse.org 978-3-319-24277-4.

[73] J. B. Endelman, “Ridge regression and other kernels for genomic selection with r
package rrblup,” Plant Genome, vol. 4, pp. 250–255, 2011.

[74] J. Bailey-Serres, J. E. Parker, E. A. Ainsworth, G. E. Oldroyd, and J. I. Schroeder,
“Genetic strategies for improving crop yields,” Nature, vol. 575, no. 7781, pp.
109–118, 2019.

[75] P. Pérez, G. de Los Campos, J. Crossa, and D. Gianola, “Genomic-enabled
prediction based on molecular markers and pedigree using the bayesian linear
regression package in r,” The plant genome, vol. 3, no. 2, 2010.

[76] P. Robson, M. Mos, J. Clifton-Brown, and I. Donnison, “Phenotypic variation in
senescence in miscanthus: towards optimising biomass quality and quantity,”
Bioenergy Research, vol. 5, pp. 95–105, 2012.

[77] C. L. Davey, P. Robson, S. Hawkins, K. Farrar, J. C. Clifton-Brown, I. S. Donnison,
and G. T. Slavov, “Genetic relationships between spring emergence, canopy
phenology, and biomass yield increase the accuracy of genomic prediction in
miscanthus,” Journal of Experimental Botany, vol. 68, no. 18, pp. 5093–5102, 2017.

[78] J. Yan and X. Wang, “Machine learning bridges omics sciences and plant breeding,”
Trends in Plant Science, vol. 28, no. 2, pp. 199–210, 2023.

[79] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science &
Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[80] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825,
pp. 357–362, Sept. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[81] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[82] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

46 of 65

https://stackoverflow.com/questions/9725675/is-there-a-standard-format-for-command-line-shell-help-text
https://stackoverflow.com/questions/9725675/is-there-a-standard-format-for-command-line-shell-help-text
http://www.haskell.org/
https://ggplot2.tidyverse.org
https://doi.org/10.1038/s41586-020-2649-2

Chapter 4 REFERENCES

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

47 of 65

https://www.tensorflow.org/

Appendices

48 of 65

Appendix A Use of Third-Party Code, Libraries and Generative AI

Appendix A

Use of Third-Party Code, Libraries
and Generative AI

1.1 Third Party Code and Software Libraries

1.1.1 Third Party Software

The Docker software [23] was used for the creation and deployment of Docker Images
and Containers. It was used without modification under the Docker Subscription
Service Agreement and the Docker Terms of Service.

The Python3 programming language [70] was used for the development of ML models.
It was used without modification under the PSF License Agreement.

1.1.2 Python Libraries

The Keras3 library [20] was used for the development of the FFNN, CVNN, and RBFN
models. It was used without modification under the Apache 2.0 license.

The Matplotlib library [79] was used to create diagrammatic depictions of models and
results. It was used without modification under the License agreement for matplotlib
versions 1.3.0 and later.

The NumPy library [80] was used for handling numerical data. It was used without
modification under the NumPy License.

The OpenCV library for Python [81] was used for reading and handling images in tests.
It was used without modification under the Apache 2.0 license.

The Pandas library [30] was used for reading CSV files and storing data. It was used
without modification under the BSD 3-Clause licence.

The Pytest library [29] was used for testing Python language utility files. It was used
without modification under the MIT license.

49 of 65

Appendix A Use of Third-Party Code, Libraries and Generative AI

The Scikit Learn library [19] was used for the development and evaluation of ML
models. It was used without modification under the BSD 3-Clause license.

The TensorFlow library [82] was used in the development of ANNs. It was used without
modification under the Apache 2.0 license.

The rbf keras layer [58] was used in the development of the RBFN model. It was used
with modification [59] under the MIT license.

1.2 Generative AI

No Generative AI tools have been used for this work.

50 of 65

Appendix B Code Excerpts

Appendix B

Code Excerpts

2.1 Docker

1 FROM ubuntu:noble
2 LABEL author=fea6@aber.ac.uk
3
4 WORKDIR /environment
5
6 RUN apt-get update -y && apt-get upgrade -y
7
8 # install packages
9 RUN apt-get install -y \

10 build-essential \
11 graphviz \
12 libncurses5-dev \
13 libgdbm-dev \
14 libnss3-dev \
15 libssl-dev \
16 libreadline-dev \
17 libffi-dev \
18 pip \
19 pkg-config \
20 python3.12 \
21 python3.12-venv \
22 tmux \
23 vim \
24 wget \
25 zlib1g-dev
26
27 # set python venv env
28 ENV VIRTUAL_ENV=/opt/venv
29 RUN python3 -m venv $VIRTUAL_ENV
30 ENV PATH="$VIRTUAL_ENV/bin:$PATH"
31
32 # install python libraries
33 # opencv 4.10.0.84 has python import errors and is unusable - 2024-08-06
34 RUN pip install \
35 keras \
36 matplotlib \
37 numpy \

51 of 65

Appendix B Code Excerpts

38 opencv-python-headless==4.10.0.82 \
39 pandas \
40 pytest \
41 scikit-learn \
42 tensorflow
43
44 # copy in and make prodels exec
45 COPY ./prodels.sh /environment/prodels
46 RUN chmod +x /environment/prodels
47
48 COPY ./run_tests.sh /environment/run_tests
49 RUN chmod +x /environment/run_tests
50
51 RUN export PATH="$PATH:/environment/prodels"
52 RUN export PATH="$PATH:/environment/run_tests"
53 RUN export PATH="$PATH:/environment/src/models/"

Listing B.1: Dockerfile contains the start-up process for the Docker Image.

1 #!/bin/bash
2 version=19
3
4 cd "$(dirname "$0")"
5
6 starting_dir=$(pwd)
7
8 cd ./src/env/
9 # to save on system space, and to ensure the new container’s name is not

reserved, remove all old containers
10 docker container prune --force
11 # build the image
12 docker build -t testing_environment . && docker tag testing_environment

testing_environment:$version
13
14 cd $starting_dir
15
16 # start container from image
17 docker run -it --env=Display -v ./src/:/environment/src/ -v ./data/:/

environment/data/ testing_environment:$version /bin/bash

Listing B.2: start container.sh prepares and runs the environment container.

1 docker cp <container_name>:/environment/outputs/model_results/ /major_project/
my_results/

Listing B.3: An example command to copy files from the container to the host machine.
This example copies the contents of the model results directory within the container
to the major projectmy results/ directory.

2.2 Scripts

1 #!/bin/bash
2
3 version=0.7.1
4
5 # go to the current directory
6 cd "$(dirname "$0")"

52 of 65

Appendix B Code Excerpts

7
8 # establish the flags
9 model_f=’’

10 pheno_f=’’
11 snp_f=’’
12 output_f=’’
13 debug_f=0
14
15 # print the help dialogue
16 print_usage() {
17 printf "PRODELS - PROject moDELS $version"
18 printf "\n\nUsage: prodels [options] [file ..] runs a given model on given

datasets"
19 printf "\n\nArguments:"
20 printf "\n -d {0|1}, 0 by default runs the model in debug mode

if set to 1"
21 printf "\n -h, displays this helpful message :)"
22 printf "\n -m (with file name), the name of the Model to train"
23 printf "\n -o (with file name), the name of the directory with /

environment/outputs/ to write results to"
24 printf "\n -p (with file name), the full path of the Phenotype CSV

dataset"
25 printf "\n -s (with file name), the full path of the SNP CSV dataset"
26 printf "\n -v, displays the program version"
27 printf "\n"
28 exit 1
29 }
30
31 # print the version dialogue
32 print_version() {
33 printf "PRODELS - PROject moDELS $version"
34 printf "\n"
35 exit 1
36 }
37
38 # get the flag args
39 while getopts ’hvm:p:s:o:d:’ flag; do
40 case "${flag}" in
41 h) print_usage ;;
42 v) print_version ;;
43 m) model_f="${OPTARG}" ;;
44 p) pheno_f="${OPTARG}" ;;
45 s) snp_f="${OPTARG}" ;;
46 o) output_f="${OPTARG}" ;;
47 d) debug_f="${OPTARG}" ;;
48 *) print_usage
49 exit 1 ;;
50 esac
51 done
52
53 # run model, pheno file, snp file, output file
54 time python3 $model_f $pheno_f $snp_f $output_f $debug_f
55
56 printf "###################### DONE ######################"
57 printf "\n"

Listing B.4: prodels copied into the container - it’s used to run models from the CLI
with flagged arguments.

53 of 65

Appendix B Code Excerpts

2.3 Python

1 import os
2 import sys
3 import csv
4 import pandas as pd
5
6 def remove_non2TT_genos(si8_path, snp_path):
7 pheno_df = pd.read_csv(si8_path)
8 snp_df = pd.read_csv(snp_path)
9 print(pheno_df)

10 print(snp_df)
11
12 filtered_df = snp_df[snp_df[’geno’].isin(pheno_df[’geno’])]
13 print(snp_df)
14
15 snp_filename, snp_extension = os.path.splitext(os.path.basename(snp_path))
16 outfile = snp_filename + "_filtered" + snp_extension
17 filtered_df.to_csv(outfile, index=False)
18
19 if __name__ == "__main__":
20 si8_path = sys.argv[1]
21 snp_path = sys.argv[2]
22
23 remove_non2TT_genos(si8_path, snp_path)

Listing B.5: snp snipper.py removes rows from a Pandas DataFrame that are not
present in another before saving the result to a new ‘filtered’ file.

54 of 65

Appendix C Phenotype Dataset Description

Appendix C

Phenotype Dataset Description

Table C.1: Description of each column in the phenotype dataset. Compiled from previous
research [16, 17, 76, 77].

Name Description Data
Type

Values Example Information
Type

geno genotype String Mb followed
by ID

”Mb-10” support

block There are four
replicate blocks,
each genotype
occurs once in
each

Int 1 - 4 (inc) 1,2,3,4 support

FieldOrder TODO int Range 2-1000 30, 816,
1000

support

row Each block is
laid-out as a row
by column grid.
This is the plants
row location on
the grid.

int Range 1 - 40
(inc)

2,6,11 support

col Each block is
laid-out as a row
by column grid.
This is the plants
column location
on the grid.

int Range 1 - 25
(inc)

2,6,11 support

species Species of the
plant

string Categories
{sinensis}

”sinensis” support

plate.id Plate identifi-
cation number
when genotyping

string Plate + tag ”Plate1B10”support

order TODO int 1 - 142 (inc) 38 support

55 of 65

Appendix C Phenotype Dataset Description

Table C.1: Description of each column in the phenotype dataset. Compiled from previous
research [16, 17, 76, 77].

Name Description Data
Type

Values Example Information
Type

pop Hierarchical pop-
ulation genetic
structure (sin1 1
Continent, sin1 2
Japan)

string Categories
{sin1 1,
sin1 2}

”sin1 1” support

long Longitude where
plant was origi-
nally collected.

float 124.852 -
140.74

140.74 support

lat Latitude where
plant was origi-
nally collected.

float 32.6697 -
41.2628

38.4005 support

alt Altitudinal data
(metres above sea
level)

float 30 - 1320 38.4005 support

in.138 TODO int single data
value

1

baseDiameter.8 The diameter
measured at
ground level
across the widest
part of the plant’s
base (mm)

int 150 - 700 450, 500 trait

TransectCount.8 Number of stems
across the mid-
dle of the plant,
determined by
inserting a stick
through the base
and counting the
stems touching
the stick (that
reach 50% of
canopy height).

int 2 - 78 12, 31 trait

TallestStem.8 The length of
the tallest stem
from the base to
the uppermost
ligule, measured
before harvest
(cm)

int 47 - 265 187, 223 trait

56 of 65

Appendix C Phenotype Dataset Description

Table C.1: Description of each column in the phenotype dataset. Compiled from previous
research [16, 17, 76, 77].

Name Description Data
Type

Values Example Information
Type

MaxCanopy
Height.8

Maximum
canopy height
recorded (cm)

int 35 - 205 140,130 trait

StemDiameter.8 Diameter mea-
sured approxi-
mately 10-15 cm
from the base of
the plant on a
randomly chosen
stem (mm)

float 2-9 5.5,8 trait

Moisture.8 The percentage of
water in the sam-
ple

float
(%)

0 - 52.45902 27.8048 trait

DryMatter.8 Yeild of plant (g) int 5 - 3440 1147,660 trait
DOYFS1.8 Day Of Flow-

ering Stage 1
refers to the
first observ-
able indication
of flowering,
recorded as the
day of the year
when the first
flag leaf emerged

int 0-365 128,220 trait

57 of 65

Appendix C Phenotype Dataset Description

Table C.1: Description of each column in the phenotype dataset. Compiled from previous
research [16, 17, 76, 77].

Name Description Data
Type

Values Example Information
Type

AvgeSen.8 Senescence score
(0 is no senes-
cence, 10 is all
green leaf area
lost) Observa-
tions were made
every 2-3 weeks
throughout the
growing season,
and AvgeSen
was calculated
as the average
of all senescence
scores for each
plant over the
approximately 4
months prior to
harvest (Sept -
Jan)

float theoretical 0-
10, actual(3.6
- 8.6)

6.4, 7 trait

es.4.doy.8 The day of the
year that emer-
gence score 4
(leaf emergence)
is recorded

int 77 - 133 105,119 trait

CanHght.119.8 Canopy height
(in cms) on day
119, 2008

int 0 - 52 30,35 trait

CanHght.158.8 Canopy height
(in cms) on day
158, 2008

int 0 - 125 85,100 trait

CanHght.176.8 Canopy height
(in cms) on day
176, 2008

int 0 - 145 100,115 trait

58 of 65

Appendix D Model Confusion Matrices by Phenotype

Appendix D

Model Confusion Matrices by
Phenotype

A confusion matrix was created from each model for each phenotype. The continuous
predictions were binned into ten groups, or fewer if ten was not possible as is the case
for the ‘es.4.doy’ trait.

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.1: Confusion Matrices for the AvgeSen trait.

59 of 65

Appendix D Model Confusion Matrices by Phenotype

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.2: Confusion Matrices for the BaseDiameter trait.

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.3: Confusion Matrices for the canopy height on day 119.

60 of 65

Appendix D Model Confusion Matrices by Phenotype

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.4: Confusion Matrices for the canopy height on day 158.

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.5: Confusion Matrices for the canopy height on day 176.

61 of 65

Appendix D Model Confusion Matrices by Phenotype

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.6: Confusion Matrices for the day of the year that flowering stage one was
observed.

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.7: Confusion Matrices for the DryMatter trait.

62 of 65

Appendix D Model Confusion Matrices by Phenotype

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.8: Confusion Matrices for the day of the year emergence stage four was ob-
served.

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.9: Confusion Matrices for the maximum canopy height.

63 of 65

Appendix D Model Confusion Matrices by Phenotype

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.10: Confusion Matrices for the Moisture trait.

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.11: Confusion Matrices for the StemDiameter trait.

64 of 65

Appendix D Model Confusion Matrices by Phenotype

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.12: Confusion Matrices for the TallestStem trait.

(a) Ridge Regression (b) Decision Tree (c) LassoLarsIC (d) SVR

(e) NuSvr (f) LinearSVR (g) FFNN (h) CVNN

Figure D.13: Confusion Matrices for the TransectCount trait.

65 of 65

	Introduction
	Methods and Methodologies
	The Data
	The Environment
	The Models
	Model Specifications

	Software Development
	Project Management
	Research and Software Development Approach

	Results and Discussion
	Results
	avgesen
	basediameter
	Canopy Heights
	doyfs
	drymatter
	es.4.doy
	maxcanheight
	moisture
	stemdiameter
	talleststem
	transectcount

	Discussion
	Conclusion

	Evaluation and Reflection
	Data Acquisition
	Software Development
	The Python and R Languages
	Model Improvements
	Reflection

	References
	Appendices
	Use of Third-Party Code, Libraries and Generative AI
	Third Party Code and Software Libraries
	Third Party Software
	Python Libraries

	Generative AI

	Code Excerpts
	Docker
	Scripts
	Python

	Phenotype Dataset Description
	Model Confusion Matrices by Phenotype

